Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Inorg Chem ; 62(50): 20834-20843, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37811965

RESUMO

Targeted α therapy (TAT) of soft-tissue cancers using the α particle-emitting radionuclide 223Ra holds great potential because of its favorable nuclear properties, adequate availability, and established clinical use for treating metastatic prostate cancer of the bone. Despite these advantages, the use of 223Ra has been largely overshadowed by other α emitters due to its challenging chelation chemistry. A key criterion that needs to be met for a radionuclide to be used in TAT is its stable attachment to a targeting vector via a bifunctional chelator. The low charge density of Ra2+ arising from its large ionic radius weakens its electrostatic binding interactions with chelators, leading to insufficient complex stability in vivo. In this study, we synthesized and evaluated macropa-XL as a novel chelator for 223Ra. It bears a large 21-crown-7 macrocyclic core and two picolinate pendent groups, which we hypothesized would effectively saturate the large coordination sphere of the Ra2+ ion. The structural chemistry of macropa-XL was first established with the nonradioactive Ba2+ ion using X-ray diffraction and X-ray absorption spectroscopy, which revealed the formation of an 11-coordinate complex in a rare anti pendent-arm configuration. Subsequently, the stability constant of the [Ra(macropa-XL)] complex was determined via competitive cation exchange with 223Ra and 224Ra radiotracers and compared with that of macropa, the current state-of-the-art chelator for Ra2+. A moderate log KML value of 8.12 was measured for [Ra(macropa-XL)], which is approximately 1.5 log K units lower than the stability constant of [Ra(macropa)]. This relative decrease in Ra2+ complex stability for macropa-XL versus macropa was further probed using density functional theory calculations. Additionally, macropa-XL was radiolabeled with 223Ra, and the kinetic stability of the resulting complex was evaluated in human serum. Although macropa-XL could effectively bind 223Ra under mild conditions, the complex appeared to be unstable to transchelation. Collectively, this study sheds additional light on the chelation chemistry of the exotic Ra2+ ion and contributes to the small, but growing, number of chelator development efforts for 223Ra-based TAT.


Assuntos
Medicina Nuclear , Rádio (Elemento) , Humanos , Quelantes/química , Rádio (Elemento)/química , Radioisótopos/química , Cátions/química
2.
Inorg Chem ; 61(32): 12847-12855, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35914099

RESUMO

Radioisotopes of metallic elements, or radiometals, are widely employed in both therapeutic and diagnostic nuclear medicine. For this application, chelators that efficiently bind the radiometal of interest and form a stable metal-ligand complex with it are required. Toward the development of new chelators for nuclear medicine, we recently reported a novel class of 18-membered macrocyclic chelators that is characterized by their ability to form stable complexes with both large and small rare-earth metals (Ln3+), a property referred to as dual size selectivity. A specific chelator in this class called py-macrodipa, which contains one pyridyl group within its macrocyclic core, was established as a promising candidate for 135La3+, 213Bi3+, and 44Sc3+ chelation. Building upon this prior work, here we report the synthesis and characterization of a new chelator called py2-macrodipa with two pyridyl units fused into the macrocyclic backbone. Its coordination chemistry with the Ln3+ series was investigated by NMR spectroscopy, X-ray crystallography, density functional theory (DFT) calculations, analytical titrations, and transchelation assays. These studies reveal that py2-macrodipa retains the expected dual size selectivity and possesses an enhanced thermodynamic affinity for all Ln3+ compared to py-macrodipa. By contrast, the kinetic stability of Ln3+ complexes with py2-macrodipa is only improved for the light, large Ln3+ ions. Based upon these observations, we further assessed the suitability of py2-macrodipa for use with 225Ac3+, a large radiometal with valuable properties for targeted α therapy. Radiolabeling and stability studies revealed py2-macrodipa to efficiently incorporate 225Ac3+ and to form a complex that is inert in human serum over 3 weeks. Although py2-macrodipa does not surpass the state-of-the-art chelator macropa for 225Ac3+ chelation, it does provide another effective 225Ac3+ chelator. These studies shed light on the fundamental coordination chemistry of the Ln3+ series and may inspire future chelator design efforts.


Assuntos
Complexos de Coordenação , Elementos da Série dos Lantanídeos , Metais Terras Raras , Quelantes/química , Complexos de Coordenação/química , Humanos , Elementos da Série dos Lantanídeos/química , Ligantes , Radioisótopos/química
3.
Inorg Chem ; 60(12): 9199-9211, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34102841

RESUMO

The radionuclide 213Bi can be applied for targeted α therapy (TAT): a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To use this radionuclide for this application, a bifunctional chelator (BFC) is needed to attach it to a biological targeting vector that can deliver it selectively to cancer cells. Here, we investigated six macrocyclic ligands as potential BFCs, fully characterizing the Bi3+ complexes by NMR spectroscopy, mass spectrometry, and elemental analysis. Solid-state structures of three complexes revealed distorted coordination geometries about the Bi3+ center arising from the stereochemically active 6s2 lone pair. The kinetic properties of the Bi3+ complexes were assessed by challenging them with a 1000-fold excess of the chelating agent diethylenetriaminepentaacetic acid (DTPA). The most kinetically inert complexes contained the most basic pendent donors. Density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations were employed to investigate this trend, suggesting that the kinetic inertness is not correlated with the extent of the 6s2 lone pair stereochemical activity, but with the extent of covalency between pendent donors. Lastly, radiolabeling studies of 213Bi (30-210 kBq) with three of the most promising ligands showed rapid formation of the radiolabeled complexes at room temperature within 8 min for ligand concentrations as low as 10-7 M, corresponding to radiochemical yields of >80%, thereby demonstrating the promise of this ligand class for use in 213Bi TAT.


Assuntos
Bismuto/uso terapêutico , Quelantes/uso terapêutico , Complexos de Coordenação/uso terapêutico , Éteres de Coroa/uso terapêutico , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/uso terapêutico , Bismuto/química , Quelantes/síntese química , Quelantes/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Éteres de Coroa/química , Teoria da Densidade Funcional , Humanos , Cinética , Ligantes , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química
4.
Chemistry ; 26(6): 1238-1242, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31743504

RESUMO

We report the first targeted nuclear medicine application of the lanthanum radionuclides 132/135 La. These isotopes represent a matched pair for diagnosis via the positron emissions of 132 La and therapy mediated by the Auger electron emissions of 135 La. We identify two effective chelators, known as DO3Apic and macropa, for these radionuclides. The 18-membered macrocycle, macropa, bound 132/135 La with better molar activity than DO3Apic under similar conditions. These chelators were conjugated to the prostate-specific membrane antigen (PSMA)-targeting agent DUPA to assess the use of radiolanthanum for in vivo imaging. The 132/135 La-labeled targeted constructs showed high uptake in tumor xenografts expressing PSMA. This study validates the use of these radioactive lanthanum isotopes for imaging applications and motivates future work to assess the therapeutic effects of the Auger electron emissions of 135 La.


Assuntos
Lantânio/química , Antígeno Prostático Específico/antagonistas & inibidores , Compostos Radiofarmacêuticos/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Compostos Radiofarmacêuticos/metabolismo , Transplante Heterólogo
5.
Inorg Chem ; 59(22): 16522-16530, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33103417

RESUMO

Efficiently separating the chemically similar lanthanide ions into elementally pure compositions is one of the greatest scientific challenges of the 21st century. Although extensive research efforts have focused on the development of organic extractants for this purpose, the implementation of aqueous complexants possessing distinct coordination chemistries has scarcely been explored as an approach to enhancing intralanthanide separations. In this study, we investigate the lanthanide coordination chemistry of macrophosphi, a novel analogue of the reverse-size selective expanded macrocycle macropa. Our studies reveal that substitution of the pyridyl-2-carboxylic acid pendent arms of macropa with pyridyl-2-phosphinic acid arms of macrophosphi gives rise to a dramatic enhancement in the ability to discriminate between light lanthanides, reflected by a binding affinity of macrophosphi for La3+ that is over 5 orders of magnitude higher than that for Gd3+. Furthermore, upon implementation of macrophosphi as an aqueous complexant in a biphasic extraction system containing the industrial extractant bis(2-ethylhexyl)phosphoric acid, separation factors of up to 45 were achieved for the Ce/La pair. These results represent a remarkable separation of adjacent lanthanides, demonstrating the significant potential of reverse-size selective aqueous complexants in lanthanide separation schemes.

6.
Inorg Chem ; 58(16): 10483-10500, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31246017

RESUMO

The f-block elements, which comprise both the lanthanide and actinide series, possess interesting spectroscopic, magnetic, and nuclear properties that make them uniquely suited for a range of biomedical applications. In this Forum Article, we provide a concise overview on the different ways that these elements are employed in medicine, highlighting their dual implementation in both diagnostic and therapeutic applications. A key requirement for the use of these labile metal ions in medicine is a suitable chelating agent that controls their in vivo biodistribution. Toward this goal, we also report our research describing the synthesis and characterization of a rigid 18-membered macrocycle called CHX-macropa, an analogue of the previously reported nonrigid ligand macropa (J. Am. Chem. Soc. 2009, 131, 3331). The lanthanide coordination chemistry of CHX-macropa is explored in detail by pH potentiometry and density functional theory (DFT) calculations. These studies reveal that CHX-macropa exhibits an enhanced thermodynamic selectivity for large over small lanthanides in comparison to its nonrigid analogue macropa. DFT calculations suggest that a key factor in the enhanced selectivity of this ligand for the large f-block ions is its rigid macrocyclic core, which cannot adequately distort to interact effectively with small ions. On the basis of its high affinity for large f-block ions, the design strategies implemented in CHX-macropa may be valuable for applying these elements in the diagnosis or treatment of disease.


Assuntos
Antineoplásicos/química , Elementos da Série dos Lantanídeos/química , Compostos Macrocíclicos/química , Animais , Teoria da Densidade Funcional , Humanos , Íons/química , Ligantes , Estrutura Molecular , Tamanho da Partícula , Soluções , Termodinâmica
7.
J Am Chem Soc ; 140(49): 17071-17078, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30485079

RESUMO

Insoluble BaSO4 scale is a costly and time-consuming problem in the petroleum industry. Clearance of BaSO4-impeded pipelines requires chelating agents that can efficiently bind Ba2+, the largest nonradioactive +2 metal ion. Due to the poor affinity of currently available chelating agents for Ba2+, however, the dissolution of BaSO4 remains inefficient, requiring very basic solutions of ligands. In this study, we investigated three diaza-18-crown-6 macrocycles bearing different pendent arms for the chelation of Ba2+ and assessed their potential for dissolving BaSO4 scale. Remarkably, the bis-picolinate ligand macropa exhibits the highest affinity reported to date for Ba2+ at pH 7.4 (log K' = 10.74), forming a complex of significant kinetic stability with this large metal ion. Furthermore, the BaSO4 dissolution properties of macropa dramatically surpass those of the state-of-the-art ligands DTPA and DOTA. Using macropa, complete dissolution of a molar equivalent of BaSO4 is reached within 30 min at room temperature in pH 8 buffer, conditions under which DTPA and DOTA only achieve 40% dissolution of BaSO4. When further applied for the dissolution of natural barite, macropa also outperforms DTPA, showing that this ligand is potentially valuable for industrial processes. Collectively, this work demonstrates that macropa is a highly effective chelator for Ba2+ that can be applied for the remediation of BaSO4 scale.


Assuntos
Sulfato de Bário/química , Quelantes/química , Éteres de Coroa/química , Ácidos Picolínicos/química , Bário/química , Quelantes/síntese química , Complexos de Coordenação/síntese química , Éteres de Coroa/síntese química , Ligantes , Ácidos Picolínicos/síntese química , Solubilidade/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 28(17): 2856-2860, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30055889

RESUMO

To achieve the sustained release of dopamine in the brain for the symptomatic treatment of Parkinson's disease, dopamine was conjugated to l-tyrosine, an l-type amino acid transporter 1 (LAT1)-targeting vector, using a secondary carbamate linker. The resulting prodrug, dopa-CBT, inhibited the uptake of the LAT1 substrate [14C]-l-leucine in LAT1-expressing MCF-7 cells with an IC50 value of 28 µM, which was 3.5-times lower than that of the gold standard for dopamine replacement therapy, l-dopa (IC50 ca. 100 µM). Despite its high affinity for LAT1, dopa-CBT was transported via LAT1 into MCF-7 cells 850-times more slowly (Vmax < 3 pmol/min/mg) than l-dopa (Vmax 2.6 nmol/min/mg), most likely due to its large size compared to l-dopa. However, dopa-CBT was significantly more stable in 10% rat liver homogenate than l-dopa, releasing dopamine and l-tyrosine, an endogenous dopamine precursor, slowly, which indicates that it may serve as a dual carrier of dopamine across the blood-brain barrier selectively expressing LAT1.


Assuntos
Carbamatos/metabolismo , Dopamina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Levodopa/farmacologia , Pró-Fármacos/farmacologia , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Levodopa/química , Células MCF-7 , Estrutura Molecular , Pró-Fármacos/química , Ratos , Relação Estrutura-Atividade
10.
Angew Chem Int Ed Engl ; 56(46): 14712-14717, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-28963750

RESUMO

The 18-membered macrocycle H2 macropa was investigated for 225 Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all 225 Ac (26 kBq) in 5 min at RT. [225 Ac(macropa)]+ remained intact over 7 to 8 days when challenged with either excess La3+ ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled 225 Ac in just minutes at RT, and macropa-Tmab retained >99 % of its 225 Ac in human serum after 7 days. In LNCaP xenograft mice, 225 Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free 225 Ac over 96 h. These findings establish macropa to be a highly promising ligand for 225 Ac chelation that will facilitate the clinical development of 225 Ac TAT for the treatment of soft-tissue metastases.


Assuntos
Actínio/química , Actínio/uso terapêutico , Partículas alfa , Compostos Macrocíclicos/química , Animais , Xenoenxertos , Humanos , Ligantes , Camundongos , Trastuzumab/química
11.
Nat Chem ; 16(2): 168-172, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37945833

RESUMO

The structure and bonding of radium (Ra) is poorly understood because of challenges arising from its scarcity and radioactivity. Here we report the synthesis of a molecular Ra2+ complex using 226Ra and the organic ligand dibenzo-30-crown-10, and its characterization in the solid state by single-crystal X-ray diffraction. The crystal structure of the Ra2+ complex shows an 11-coordinate arrangement comprising the 10 donor O atoms of dibenzo-30-crown-10 and that of a bound water molecule. Under identical crystallization conditions, barium (Ba2+) yielded a 10-coordinate 'Pac-Man'-shaped structure lacking water. Furthermore, the bond distance between the Ra centre and the O atom of the coordinated water is substantially longer than would be predicted from the ionic radius of Ra2+ and by analogy with Ba2+, supporting greater water lability in Ra2+ complexes than in their Ba2+ counterparts. Barium often serves as a non-radioactive surrogate for radium, but our findings show that Ra2+ chemistry cannot always be predicted using Ba2+.

12.
Sci Adv ; 10(1): eadj8765, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181087

RESUMO

Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra2+, Ba2+, and Sr2+. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid (H4COCO) bound Ra2+, Ba2+, and Sr2+ to form M(HxCOCO)x-2. Upon isolating radioactive 223Ra from its parent radionuclides (227Ac and 227Th), 223Ra2+ reacted with the fully deprotonated COCO4- chelator to generate Ra(COCO)2-(aq) (log KRa(COCO)2- = 5.97 ± 0.01), a rare example of a molecular radium complex. Comparative analyses with Sr2+ and Ba2+ congeners informed on what attributes engendered success in heavy alkaline earth complexation. Chelators with high negative charge [-4 for Ra(COCO)2-(aq)] and many donor atoms [≥11 in Ra(COCO)2-(aq)] provided a framework for stable complex formation. These conditions achieved steric saturation and overcame the weak polarization powers associated with these large dicationic metals.

13.
J Phys Chem B ; 127(21): 4886-4895, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37216432

RESUMO

Liquid/liquid (L/L) interfaces play a key, yet poorly understood, role in a range of complex chemical phenomena where time-evolving interfacial structures and transient supramolecular assemblies act as gatekeepers to function. Here, we employ surface-specific vibrational sum frequency generation combined with neutron and X-ray scattering methods to track the transport of dioctyl phosphoric acid (DOP) and di-(2-ethylhexyl) phosphoric acid (DEHPA) ligands used in solvent extraction at buried oil/aqueous interfaces away from equilibrium. Our results show evidence for a dynamic interfacial restructuring at low ligand concentrations in contrast to expectation. These time-varying interfaces arise from the transport of sparingly soluble interfacial ligands into the neighboring aqueous phase. These results support a proposed "antagonistic" role of ligand complexation in the aqueous phase that could serve as a holdback mechanism in kinetic liquid extractions. These findings provide new insights into interfacially controlled chemical transport at L/L interfaces and how these interfaces vary chemically, structurally, and temporally in a concentration-dependent manner and present potential avenues to design selective kinetic separations.

14.
J Nucl Med ; 64(4): 549-554, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396453

RESUMO

Neuroendocrine tumors (NETs) express somatostatin receptors (SSTRs) 2 and 5. Modified variants of somatostatin, the cognate ligand for SSTR2 and SSTR5, are used in treatment for metastatic and locoregional disease. Peptide receptor radionuclide therapy with 177Lu-DOTATATE (DOTA-octreotate), a ß-particle-emitting somatostatin derivative, has demonstrated survival benefit in patients with SSTR-positive NETs. Despite excellent results, a subset of patients has tumors that are resistant to treatment, and alternative agents are needed. Targeted α-particle therapy has been shown to kill tumors that are resistant to targeted ß-particle therapy, suggesting that targeted α-particle therapy may offer a promising treatment option for patients with 177Lu-DOTATATE-resistant disease. Although DOTATATE can chelate the clinically relevant α-particle-emitting radionuclide 225Ac, the labeling reaction requires high temperatures, and the resulting radioconjugate has suboptimal stability. Methods: We designed and synthesized MACROPATATE (MACROPA-octreotate), a novel radioconjugate capable of chelating 225Ac at room temperature, and assessed its in vitro and in vivo performance. Results: MACROPATATE demonstrated comparable affinity to DOTATATE (dissociation constant, 21 nM) in U2-OS-SSTR2, a SSTR2-positive transfected cell line. 225Ac-MACROPATATE demonstrated superior serum stability at 37°C over time compared with 225Ac-DOTATATE. Biodistribution studies demonstrated higher tumor uptake of 225Ac-MACROPATATE than of 225Ac-DOTATATE in mice engrafted with subcutaneous H69 NETs. Therapy studies showed that 225Ac-MACROPATATE exhibits significant antitumor and survival benefit compared with saline control in mice engrafted with SSTR-positive tumors. However, the increased accumulation of 225Ac-MACROPATATE in liver and kidneys and subsequent toxicity to these organs decreased its therapeutic index compared with 225Ac-DOTATATE. Conclusion: 225Ac-MACROPATATE and 225Ac-DOTATATE exhibit favorable therapeutic efficacy in animal models. Because of elevated liver and kidney accumulation and lower administered activity for dose-limiting toxicity of 225Ac-MACROPATATE, 225Ac-DOTATATE was deemed the superior agent for targeted α-particle peptide receptor radionuclide therapy.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Camundongos , Animais , Octreotida , Tumores Neuroendócrinos/metabolismo , Compostos Organometálicos/uso terapêutico , Distribuição Tecidual , Somatostatina/metabolismo , Receptores de Somatostatina/metabolismo , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
15.
J Colloid Interface Sci ; 609: 807-814, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34872722

RESUMO

HYPOTHESIS: Organophosphorus-based ligands represent a versatile set of solvent extraction reagents whose chemical makeup plays an important role in extraction mechanism. We hypothesize that the branching of the extractant hydrophobic tail and its oil-phase solvation affect the liquid/liquid interfacial structure. Understanding the structure mediated adsorption and interfacial ordering becomes key in designing ligands with enhanced selectivity and efficiency for targeted extractions. EXPERIMENT: We employed vibrational sum frequency generation spectroscopy and interfacial tension measurements to extract thermodynamic adsorption energies, map interfacial ordering, and rationalize disparate behaviors of model di-(2-ethylhexyl) phosphoric acid and dioctyl phosphoric acid ligands at the hexadecane water interface. FINDINGS: With increased surface loading, ligands with branched hydrophobic tails formed stable interfaces at much lower concentrations than those observed for ligands with linear alkyl tails. The lack of an oil phase and associated solvation results in markedly different interfacial properties, and thus measurements made at air/liquid surfaces cannot be assumed to correlate with the processes occurring at buried liquid/liquid interfaces. We attribute these differences in the surface mediated self-assembly to key variations in hydrophobic interactions and tail solvation taking place in the oil phase demonstrating that interactions in both the polar and nonpolar phases are essential to understand self-assembly and function.


Assuntos
Água , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Propriedades de Superfície
16.
Chem Commun (Camb) ; 58(71): 9938-9941, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35983753

RESUMO

The coordination chemistry of Ra2+ is poorly defined, hampering efforts to design effective chelators for 223Ra-based targeted alpha therapy. Here, we report the complexation thermodynamics of Ra2+ with the biomedically-relevant chelators DOTA and macropa. Our work reveals the highest affinity chelator to date for Ra2+ and advances our understanding of key factors underlying complex stability and selectivity for this underexplored ion.


Assuntos
Rádio (Elemento) , Quelantes , Termodinâmica
17.
Chem Sci ; 12(10): 3733-3742, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-34163647

RESUMO

Targeted alpha therapy is an emerging strategy for the treatment of disseminated cancer. [223Ra]RaCl2 is the only clinically approved alpha particle-emitting drug, and it is used to treat castrate-resistant prostate cancer bone metastases, to which [223Ra]Ra2+ localizes. To specifically direct [223Ra]Ra2+ to non-osseous disease sites, chelation and conjugation to a cancer-targeting moiety is necessary. Although previous efforts to stably chelate [223Ra]Ra2+ for this purpose have had limited success, here we report a biologically stable radiocomplex with the 18-membered macrocyclic chelator macropa. Quantitative labeling of macropa with [223Ra]Ra2+ was accomplished within 5 min at room temperature with a radiolabeling efficiency of >95%, representing a significant advancement over conventional chelators such as DOTA and EDTA, which were unable to completely complex [223Ra]Ra2+ under these conditions. [223Ra][Ra(macropa)] was highly stable in human serum and exhibited dramatically reduced bone and spleen uptake in mice in comparison to bone-targeted [223Ra]RaCl2, signifying that [223Ra][Ra(macropa)] remains intact in vivo. Upon conjugation of macropa to a single amino acid ß-alanine as well as to the prostate-specific membrane antigen-targeting peptide DUPA, both constructs retained high affinity for 223Ra, complexing >95% of Ra2+ in solution. Furthermore, [223Ra][Ra(macropa-ß-alanine)] was rapidly cleared from mice and showed low 223Ra bone absorption, indicating that this conjugate is stable under biological conditions. Unexpectedly, this stability was lost upon conjugation of macropa to DUPA, which suggests a role of targeting vectors in complex stability in vivo for this system. Nonetheless, our successful demonstration of efficient radiolabeling of the ß-alanine conjugate with 223Ra and its subsequent stability in vivo establishes for the first time the possibility of delivering [223Ra]Ra2+ to metastases outside of the bone using functionalized chelators, marking a significant expansion of the therapeutic utility of this radiometal in the clinic.

18.
J Nucl Med ; 60(5): 649-655, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30413660

RESUMO

Promising biochemical responses to 225Ac-prostate-specific membrane antigen (PSMA) 617, even in patients who are refractory to ß-particle radiation, illustrate the potential of targeted α-therapy for the treatment of metastatic castration-resistant prostate cancer. However, side effects such as xerostomia are severe and irreversible. To fully harness the potential of targeted α-therapy, it is necessary to increase the therapeutic index of the targeted radioligands. One emerging strategy is to increase clearance half-life through enhanced binding to serum albumin. We have evaluated the albumin-binding PSMA-targeting ligand RPS-074 in a LNCaP xenograft model to determine its potential value to the treatment of prostate cancer. Methods:225Ac-RPS-074 was evaluated in male BALB/c mice bearing LNCaP xenograft tumors. A biodistribution study was performed over 21 d to determine the dosimetry in tumors and normal tissue. The dose response was measured in groups of 7 mice using 37, 74, and 148 kBq of 225Ac-RPS-074 and compared with positive and negative control groups. Mice were sacrificed when tumor volume exceeded 1,500 mm3Results:225Ac-RPS-074 was labeled in greater than 98% radiochemical yield and showed high (>10% injected dose/g) and sustained accumulation in LNCaP tumors from 24 h to beyond 14 d. Signal in blood and highly vascularized tissues was evident over the first 24 h after injection and cleared by 7 d. The tumor-to-kidney ratio was 4.3 ± 0.7 at 24 h and 62.2 ± 9.5 at 14 d. A single injection of 148 kBq induced a complete response in 6 of 7 tumors, with no apparent toxic effects. Treatment with 74 kBq induced a partial response in 7 of 7 tumors, but from 42 d, 6 of 7 experienced significant regrowth. The 37-kBq group experienced a survival benefit relative to the negative control but not compared with the positive control group. Conclusion: A single dose of 148 kBq of 225Ac-RPS-074 induced a complete response in 86% of tumors, with tumor-to-normal-tissue ratios that predict an improved therapeutic index. The use of the macropa chelator enabled quantitative radiolabeling and may facilitate the clinical translation of this promising targeted α-therapeutic.


Assuntos
Transformação Celular Neoplásica , Neoplasias da Próstata/radioterapia , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Meia-Vida , Humanos , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Radioquímica , Radiometria , Distribuição Tecidual , Resultado do Tratamento
19.
Cancer Biother Radiopharm ; 33(8): 336-348, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29889562

RESUMO

The α-emitting radionuclide actinium-225 possesses nuclear properties that are highly promising for use in targeted α therapy (TAT), a therapeutic strategy that employs α particle emissions to destroy tumors. A key factor, however, that may hinder the clinical use of actinium-225 is the poor understanding of its coordination chemistry, which creates challenges for the development of suitable chelation strategies for this ion. In this article, we provide an overview of the known chemistry of actinium and a summary of the chelating agents that have been explored for use in actinium-225-based TAT. This overview provides a starting point for researchers in the field of TAT to gain an understanding of this valuable therapeutic radionuclide.


Assuntos
Actínio/uso terapêutico , Quelantes/uso terapêutico , Animais , Humanos , Neoplasias/radioterapia , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
20.
ChemMedChem ; 11(15): 1596-9, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27440560

RESUMO

The clinical use of N,N'-bis(2-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) has been hindered by its lack of bioavailability. N,N'-bis(2-boronic pinacol ester benzyl)ethylenediamine-N,N'-diacetic acid methyl, ethyl, and isopropyl esters 7 a-c, respectively, and their dimesylate salts 8 a-c, are double prodrugs that mask the two phenolate and two carboxylate donors of HBED as boronic esters and carboxylate esters, respectively. Their activation by chemical hydrolysis and oxidation, their passive diffusivity, and their cytoprotective capabilities have been investigated here. 8 a-c hydrolyzed in minimum essential medium at 37 °C with half-lives of 0.69, 0.81, and 2.28 h, respectively. The intermediate formed, 9 [N,N'-bis(2-boronic acid benzyl)ethylenediamine-N,N'-diacetic acid], then underwent oxidative deboronation by H2 O2 to give HBED (k=1.82 m(-1) min(-1) ). Solubility measurements in mineral oil and in phosphate buffer indicated that 7 a had a better balance between lipid and aqueous solubilities than did HBED. 7 a was also able to passively diffuse across a lipid-like silicone membrane (log flux=-0.36), whereas HBED-HCl was not. 8 c provided better protection to retinal cells than did HBED against a lethal dose of H2 O2 (84 % vs. 28 % protection, respectively, at 44 µm). These results suggest that the double prodrugs have better membrane permeability than does HBED, and therefore could be therapeutically useful for improving the delivery of HBED.


Assuntos
Ácidos Borônicos/farmacologia , Ácido Edético/análogos & derivados , Ácido Edético/farmacologia , Peróxido de Hidrogênio/toxicidade , Pró-Fármacos/farmacologia , Substâncias Protetoras/farmacologia , Ácidos Borônicos/síntese química , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Difusão , Ácido Edético/síntese química , Humanos , Hidrólise , Quelantes de Ferro/síntese química , Quelantes de Ferro/farmacologia , Oxirredução , Pró-Fármacos/síntese química , Substâncias Protetoras/síntese química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA