Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mol Cell Proteomics ; 15(4): 1435-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26785728

RESUMO

PMM2-CDG, formerly known as congenital disorder of glycosylation-Ia (CDG-Ia), is caused by mutations in the gene encoding phosphomannomutase 2 (PMM2). This disease is the most frequent form of inherited CDG-diseases affecting protein N-glycosylation in human. PMM2-CDG is a multisystemic disease with severe psychomotor and mental retardation. In order to study the pathophysiology of PMM2-CDG in a human cell culture model, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of a PMM2-CDG-patient (PMM2-iPSCs). Expression of pluripotency factors andin vitrodifferentiation into cell types of the three germ layers was unaffected in the analyzed clone PMM2-iPSC-C3 compared with nondiseased human pluripotent stem cells (hPSCs), revealing no broader influence of the PMM2 mutation on pluripotency in cell culture. Analysis of gene expression by deep-sequencing did not show obvious differences in the transcriptome between PMM2-iPSC-C3 and nondiseased hPSCs. By multiplexed capillary gel electrophoresis coupled to laser induced fluorescence detection (xCGE-LIF) we could show that PMM2-iPSC-C3 exhibit the common hPSC N-glycosylation pattern with high-mannose-type N-glycans as the predominant species. However, phosphomannomutase activity of PMM2-iPSC-C3 was 27% compared with control hPSCs and lectin staining revealed an overall reduced protein glycosylation. In addition, quantitative assessment of N-glycosylation by xCGE-LIF showed an up to 40% reduction of high-mannose-type N-glycans in PMM2-iPSC-C3, which was in concordance to the observed reduction of the Glc3Man9GlcNAc2 lipid-linked oligosaccharide compared with control hPSCs. Thus we could model the PMM2-CDG disease phenotype of hypoglycosylation with patient derived iPSCsin vitro Knock-down ofPMM2by shRNA in PMM2-iPSC-C3 led to a residual activity of 5% and to a further reduction of the level of N-glycosylation. Taken together we have developed human stem cell-based cell culture models with stepwise reduced levels of N-glycosylation now enabling to study the role of N-glycosylation during early human development.


Assuntos
Defeitos Congênitos da Glicosilação/patologia , Glicômica/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Fosfotransferases (Fosfomutases)/deficiência , Células Cultivadas , Defeitos Congênitos da Glicosilação/metabolismo , Perfilação da Expressão Gênica/métodos , Glicosilação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Fosfotransferases (Fosfomutases)/metabolismo , Polissacarídeos/metabolismo
2.
Eur J Hum Genet ; 26(12): 1773-1783, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30089820

RESUMO

ST3GAL3 encodes the Golgi enzyme beta-galactoside-alpha-2,3-sialyltransferase-III that in humans forms, among others, the sialyl Lewis a (sLea) epitope on proteins. Functionally deleterious variants in this gene were previously identified in patients with either non-syndromic or syndromic intellectual disability such as West syndrome, an age-dependent epileptic encephalopathic syndrome associated with developmental arrest or regression. The aim of this study was to further elucidate the molecular and cellular mechanisms causing West syndrome by lack of ST3GAL3 function. For this purpose we generated induced pluripotent stem cell (iPSC) lines from fibroblasts obtained from a patient with West syndrome, carrying a variant in exon 12 (c.958G>C, p.(Ala320Pro)) of ST3GAL3, and a healthy sibling, using lentiviral reprogramming. iPSCs and cortical neurons derived thereof were analysed by lectin blots, mRNA sequencing, adherence assays, and FACS. While no significant difference was observed at stem cell or fibroblast level between patient and control cells, patient-derived cortical neurons displayed an altered lectin blot staining pattern, enhanced adherence to a poly-L-ornithine/laminin-coated surface and decreased levels of neurons expressing T-box transcription factor brain 1. Our results suggest that changes in the sialylation pattern on the surface of specific neuronal cell types affect adhesive interactions during development, which in turn may cause subtle changes in tissue composition that could result in the occurrence of epilepsy and might impair neural development to an extent that is detrimental to the development and maintenance of normal cognitive functions.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Medicina de Precisão/métodos , Sialiltransferases/deficiência , Espasmos Infantis/genética , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lactente , Lectinas/genética , Lectinas/metabolismo , Camundongos , Mutação , Neurônios/citologia , Neurônios/metabolismo , Cultura Primária de Células/métodos , Sialiltransferases/genética , Espasmos Infantis/patologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
3.
Exp Hematol ; 45: 27-35.e1, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27693388

RESUMO

Recent clinical trials have indicated the high potential of regulatory T cells (Tregs) in the prevention of acute and chronic graft-versus-host disease (GvHD) after hematopoietic stem cell transplantation, but immune interventions require large numbers of Tregs. With respect to their limited natural occurrence, development and optimization of protocols for large-scale expansion of clinical-grade Tregs are essential if considered for therapeutic use. We compared different clinical-grade large-scale expansion protocols for repetitive transfer of large numbers of Tregs in clinical trials for the prevention of acute and/or chronic GvHD. Donor Tregs were isolated using magnetic-activated cell sorting (MACS) technology with good manufacturing practice-compliant devices. CD8 and CD19 depletion followed by CD25 enrichment resulted in the isolation of CD4+CD25+CD127- Tregs with a mean purity of 77%. Cell populations were expanded ex vivo using X-Vivo 15 (±rapamycin), TexMACS (±rapamycin), and CellGro DC (±rapamycin) in the presence of interleukin-2. The highest rates of expansion of clinical-grade Tregs were observed for X-Vivo 15 and CellGro DC without rapamycin in compared with all other expansion media tested. The suppressive capacity of the expanded Treg population was maintained under all conditions investigated. Our data suggest that expansion with CellGro provides data comparable to those obtained with TexMACS or X-Vivo 15 with rapamycin, although all three conditions did not provide the same propagation rate as X-Vivo 15 alone. With respect to functionality, phenotype, and stability, CellGro DC medium represents a reasonable alternative for good manufacturing practice-compatible large-scale ex vivo expansion.


Assuntos
Transferência Adotiva/métodos , Transferência Adotiva/normas , Técnicas de Cultura Celular por Lotes , Fidelidade a Diretrizes , Linfócitos T Reguladores , Adulto , Técnicas de Cultura Celular por Lotes/métodos , Técnicas de Cultura Celular por Lotes/normas , Biomarcadores , Movimento Celular , Separação Celular , Metilação de DNA , Feminino , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Masculino , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA