Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cureus ; 16(4): e57452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38699125

RESUMO

Essential tremor (ET) is one of the most common adult movement disorders. As the worldwide population ages, the incidence and prevalence of ET is increasing. Although most cases can be managed conservatively, there is a subset of ET that is refractory to medical management. By virtue of being "reversible", deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) of the thalamus is one commonly accepted intervention. As an alternative to invasive and expensive DBS, there has been a renaissance in treating ET with lesion-based approaches, spearheaded most recently by high-intensity focused ultrasound (HIFU), the hallmark of which is that it is non-invasive. Meanwhile, stereotactic radiosurgical (SRS) lesioning of VIM represents another time-honored lesion-based non-invasive treatment of ET, which is especially well suited for those patients that cannot tolerate open neurosurgery and is now also getting a "second look". While multiple SRS platforms have been and continue to be used to treat ET, there is little in the way of dosimetric comparison between different technologies. In this brief technical report we compare the dosimetric profiles of three major radiosurgical platforms (Gamma Knife, CyberKnife Robotic Radiosurgery, and Zap-X Gyroscopic Radiosurgery (GRS)) for the treatment of ET. In general, the GRS and Gamma Knife were shown to have the best theoretical dosimetric profiles for VIM lesioning. Nevertheless the relevance of such superiority to clinical outcomes requires future patient studies.

2.
Cureus ; 13(3): e13972, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33880301

RESUMO

Various small-field radiation dose detectors were systematically compared and their impact on measured beam performance of the ZAP-X® dedicated stereotactic radiosurgery system (ZAP Surgical Systems, Inc., San Carlos, CA, USA) was determined. Three Physikalische Technische Werkstaetten (PTW) diodes, i.e., the microSilicon, the microDiamond, and the Stereotactic Radiosurgery (SRS) diode detectors of (PTW-Freiburg, Freiburg, Germany), as well as Gafchromic™ External Beam Therapy 3 (EBT) film (Ashland, Inc., Wilmington, DE, USA), were used and compared to arrive at a recommended standard for this critical component of small-field beam measurements. Beam profiles, including the dose fall-off region near the edge of the beam, were measured with the PTW diodes and EBT3 film and subsequently contrasted. The impact of detector physical and dosimetric characteristics on the results of the measurements was investigated and compared with film measurements. The beam penumbra was used to quantify the dose fall-off. The measurement acquired with the diodes and film showed the most significant differences in the fall-off region near the field edge. The film-based measurements clearly showed the steepest dose gradient verified by the penumbra value of 1.21 mm, followed by the SRS diode with 1.60 mm, the microSilicon diode with 1.67 mm, and the microDiamond diode with 1.83 mm. A clear correlation of each detector's sensitive area with the penumbra was found, with the microDiamond detector at 2.2 mm diameter sensitive area having the largest penumbra, followed by the microSilicon and SRS diodes. Beam measurements for the purposes of system characterization or treatment planning system beam data acquisition depend, to a large extent, on detector characteristics. This is especially true for small-field dosimetry performed during stereotactic radiosurgery beam measurements. Careful consideration should be practiced which allows for the measurements to represent true beam characteristics and minimize the impact of the detector on the measurements. We conclude that film should be considered the reference method for such measurements with the ZAP-X due to its smallest physical measurement resolution of 23.1 µm. Potential drawbacks to this methodology are the need to calibrate the film relative to the dose and possible problems with saturation and non-linear film response for very high and very low optical densities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA