Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Biochemistry ; 63(5): 699-710, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386885

RESUMO

Campylobacter jejuni is a Gram-negative pathogenic bacterium commonly found in chickens and is the leading cause of human diarrheal disease worldwide. The various serotypes of C. jejuni produce structurally distinct capsular polysaccharides (CPSs) on the exterior surfaces of the cell wall. The capsular polysaccharide from C. jejuni serotype HS:5 is composed of a repeating sequence of d-glycero-d-manno-heptose and d-glucitol-6-phosphate. We previously defined the pathway for the production of d-glycero-d-manno-heptose in C. jejuni. Here, we elucidate the biosynthetic pathway for the assembly of cytidine diphosphate (CDP)-6-d-glucitol by the combined action of two previously uncharacterized enzymes. The first enzyme catalyzes the formation of CDP-6-d-fructose from cytidine triphosphate (CTP) and d-fructose-6-phosphate. The second enzyme reduces CDP-6-d-fructose with NADPH to generate CDP-6-d-glucitol. Using sequence similarity network (SSN) and genome neighborhood network (GNN) analyses, we predict that these pairs of proteins are responsible for the biosynthesis of CDP-6-d-glucitol and/or CDP-d-mannitol in the lipopolysaccharides (LPSs) and capsular polysaccharides in more than 200 other organisms. In addition, high resolution X-ray structures of the second enzyme are reported, which provide novel insight into the manner in which an open-chain nucleotide-linked sugar is harbored in an active site cleft.


Assuntos
Campylobacter jejuni , Animais , Humanos , Sorbitol/metabolismo , Galinhas/metabolismo , Polissacarídeos/metabolismo , Cistina Difosfato/metabolismo , Frutose/metabolismo , Polissacarídeos Bacterianos/metabolismo
2.
J Biol Chem ; 299(10): 105200, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660908

RESUMO

The sugar, 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, was first identified ∼40 years ago in the O-antigen of Pseudomonas aeruginosa O:3,a,d. Since then, it has been observed on the O-antigens of various pathogenic Gram-negative bacteria including Bordetella pertussis, Escherichia albertii, and Pseudomonas mediterranea. Previous studies have established that five enzymes are required for its biosynthesis beginning with uridine dinucleotide (UDP)-N-acetyl-d-glucosamine (UDP-GlcNAc). The final step in the pathway is catalyzed by a 2-epimerase, which utilizes UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid as its substrate. Curious as to whether this biochemical pathway is found in extreme thermophiles, we examined the published genome sequence for Thermus thermophilus HB27 and identified five ORFs that could possibly encode for the required enzymes. The focus of this investigation is on the ORF WP_011172736, which we demonstrate encodes for a 2-epimerase. For this investigation, ten high resolution X-ray crystallographic structures were determined to resolutions of 2.3 Å or higher. The models have revealed the manner in which the 2-epimerase anchors its UDP-sugar substrate as well as its UDP-sugar product into the active site. In addition, this study reveals for the first time the manner in which any sugar 2-epimerase can simultaneously bind UDP-sugars in both the active site and the allosteric binding region. We have also demonstrated that the T. thermophilus enzyme is allosterically regulated by UDP-GlcNAc. Whereas the sugar 2-epimerases that function on UDP-GlcNAc have been the focus of past biochemical and structural analyses, this is the first detailed investigation of a 2-epimerase that specifically utilizes UDP-2,3-diacetamido-2,3-dideoxy-d-glucuronic acid as its substrate.


Assuntos
Racemases e Epimerases , Açúcares , Thermus thermophilus , Carboidratos Epimerases/química , Domínio Catalítico , Antígenos O , Racemases e Epimerases/metabolismo , Açúcares de Uridina Difosfato , Thermus thermophilus/enzimologia , Biocatálise
3.
J Biol Chem ; 299(9): 105135, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549809

RESUMO

The bacterial metallo-ß-lactamases (MBLs) catalyze the inactivation of ß-lactam antibiotics. Identifying novel pharmacophores remains crucial for the clinical development of additional MBL inhibitors. Previously, 1-hydroxypyridine-2(1H)-thione-6-carboxylic acid, hereafter referred to as 1,2-HPT-6-COOH, was reported as a low cytotoxic nanomolar ß-lactamase inhibitor of Verona-integron-encoded metallo-ß-lactamase 2, capable of rescuing ß-lactam antibiotic activity. In this study, we explore its exact mechanism of inhibition and the extent of its activity through structural characterization of its binding to New Delhi metallo-ß-lactamase 4 (NDM-4) and its inhibitory activity against both NDM-1 and NDM-4. Of all the structure-validated MBL inhibitors available, 1,2-HPT-6-COOH is the first discovered compound capable of forming an octahedral coordination sphere with Zn2 of the binuclear metal center. This unexpected mechanism of action provides important insight for the further optimization of 1,2-HPT-6-COOH and the identification of additional pharmacophores for MBL inhibition.

4.
Biochemistry ; 62(1): 134-144, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36534477

RESUMO

Campylobacter jejuni is a human pathogen and the leading cause of food poisoning in the United States and Europe. Surrounding the exterior surface of this bacterium is a capsular polysaccharide (CPS) that consists of a repeating sequence of common and unusual carbohydrate segments. At least 10 different heptose sugars have thus far been identified in the various strains of C. jejuni. The accepted biosynthetic pathway for the construction of the 6-deoxy-heptoses begins with the 4,6-dehydration of GDP-d-glycero-d-manno-heptose by a dehydratase, followed by an epimerase that racemizes C3 and/or C5 of the product GDP-6-deoxy-4-keto-d-lyxo-heptose. In the final step, a C4-reductase catalyzes the NADPH reduction of the resulting 4-keto product. However, in some strains and serotypes of C. jejuni, there are two separate C4-reductases with different product specificities in the gene cluster for CPS formation. Five pairs of these tandem C4-reductases were isolated, and the catalytic properties were ascertained. In four out of five cases, one of the two C4-reductases is able to catalyze the isomerization of C3 and C5 of GDP-6-deoxy-4-keto-d-lyxo-heptose, in addition to the catalysis of the reduction of C4, thus bypassing the requirement for a separate C3/C5-isomerase. In each case, the 3'-end of the gene for the first C4-reductase contains a poly-G tract of 8-10 guanine residues that may be used to control the expression and/or catalytic activity of either C4-reductase. The three-dimensional structure of the C4-reductase from serotype HS:15, which only does a reduction of C4, was determined to 1.45 Å resolution in the presence of NADPH and GDP.


Assuntos
Campylobacter jejuni , Oxirredutases , Humanos , Oxirredutases/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , NADP/metabolismo , Polissacarídeos/metabolismo , Heptoses
5.
Biochemistry ; 61(13): 1313-1322, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35715226

RESUMO

Campylobacter jejuni is a human pathogen and a leading cause of food poisoning in the United States and Europe. Surrounding the outside of the bacterium is a carbohydrate coat known as the capsular polysaccharide. Various strains of C. jejuni have different sequences of unusual sugars and an assortment of decorations. Many of the serotypes have heptoses with differing stereochemical arrangements at C2 through C6. One of the many common modifications is a 6-deoxy-heptose that is formed by dehydration of GDP-d-glycero-α-d-manno-heptose to GDP-6-deoxy-4-keto-d-lyxo-heptose via the action of the enzyme GDP-d-glycero-α-d-manno-heptose 4,6-dehydratase. Herein, we report the biochemical and structural characterization of this enzyme from C. jejuni 81-176 (serotype HS:23/36). The enzyme was purified to homogeneity, and its three-dimensional structure was determined to a resolution of 2.1 Å. Kinetic analyses suggest that the reaction mechanism proceeds through the formation of a 4-keto intermediate followed by the loss of water from C5/C6. Based on the three-dimensional structure, it is proposed that oxidation of C4 is assisted by proton transfer from the hydroxyl group to the phenolate of Tyr-159 and hydride transfer to the tightly bound NAD+ in the active site. Elimination of water at C5/C6 is most likely assisted by abstraction of the proton at C5 by Glu-136 and subsequent proton transfer to the hydroxyl at C6 via Ser-134 and Tyr-159. A bioinformatic analysis identified 19 additional 4,6-dehydratases from serotyped strains of C. jejuni that are 89-98% identical in the amino acid sequence, indicating that each of these strains should contain a 6-deoxy-heptose within their capsular polysaccharides.


Assuntos
Campylobacter jejuni , Proteínas de Bactérias/química , Heptoses/química , Humanos , Hidroliases/metabolismo , Prótons , Água/metabolismo
6.
Biochemistry ; 61(18): 2036-2048, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36093987

RESUMO

Campylobacter jejuni is a human pathogen and one of the leading causes of food poisoning in Europe and the United States. The outside of the bacterium is coated with a capsular polysaccharide that assists in the evasion of the host immune system. Many of the serotyped strains of C. jejuni contain a 6-deoxy-heptose moiety that is biosynthesized from GDP-d-glycero-d-manno-heptose by the successive actions of a 4,6-dehydratase, a C3/C5-epimerase, and a C4-reductase. We identified 18 different C3/C5-epimerases that could be clustered together into three groups at a sequence identity of >89%. Four of the enzymes from the largest cluster (from serotypes HS:3, HS:10, HS:23/36, and HS:41) were shown to only catalyze the epimerization at C3. Three enzymes from the second largest cluster (HS:2, HS:15, and HS:42) were shown to catalyze the epimerization at C3 and C5. Enzymes from the third cluster were not characterized. The three-dimensional structures of the epimerases from serotypes HS:3, HS:23/36, HS:15, and HS:41 were determined to resolutions of 1.5-1.9 Å. The overall subunit architecture places these enzymes into the diverse "cupin" superfamily. Within X-ray coordinate error, the immediate regions surrounding the active sites are identical, suggesting that factors extending farther out may influence product outcome. The X-ray crystal structures are consistent with His-67 and Tyr-134 acting as general acid/base catalysts for the epimerization of C3 and/or C5. Two amino acid changes (A76V/C136L) were enough to convert the C3-epimerase from serotype HS:3 to one that could now catalyze the epimerization at both C3 and C5.


Assuntos
Campylobacter jejuni , Aminoácidos/metabolismo , Hidroliases/metabolismo , Oxirredutases/metabolismo , Polissacarídeos/metabolismo , Racemases e Epimerases/metabolismo
7.
J Biol Chem ; 296: 100463, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639157

RESUMO

Psychrobacter cryohalolentis strain K5T is a Gram-negative organism first isolated in 2006. It has a complex O-antigen that contains, in addition to l-rhamnose and d-galactose, two diacetamido- and a triacetamido-sugar. The biochemical pathways for the production of these unusual sugars are presently unknown. Utilizing the published genome sequence of the organism, we hypothesized that the genes 0612, 0638, and 0637 encode for a 4,6-dehydratase, an aminotransferase, and an N-acetyltransferase, respectively, which would be required for the biosynthesis of one of the diacetamido-sugars, 2,4-diacetamido-2,4,6-trideoxy-d-glucose, starting from UDP-N-acetylglucosamine. Here we present functional and structural data on the proteins encoded by the 0638 and 0637 genes. The kinetic properties of these enzymes were investigated by a discontinuous HPLC assay. An X-ray crystallographic structure of 0638, determined in its external aldimine form to 1.3 Å resolution, demonstrated the manner in which the UDP ligand is positioned into the active site. It is strikingly different from that previously observed for PglE from Campylobacter jejuni, which functions on the same substrate. Four X-ray crystallographic structures were also determined for 0637 in various complexed states at resolutions between 1.3 and 1.55 Å. Remarkably, a tetrahedral intermediate mimicking the presumed transition state was trapped in one of the complexes. The data presented herein confirm the hypothesized functions of these enzymes and provide new insight into an unusual sugar biosynthetic pathway in Gram-negative bacteria. We also describe an efficient method for acetyl-CoA synthesis that allowed us to overcome its prohibitive cost for this analysis.


Assuntos
Monossacarídeos/biossíntese , Psychrobacter/enzimologia , Psychrobacter/genética , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cristalografia por Raios X/métodos , Galactose/metabolismo , Cinética , Lipopolissacarídeos/química , Monossacarídeos/química , Conformação Proteica , Psychrobacter/metabolismo , Açúcares/metabolismo , Transaminases , Uridina Difosfato N-Acetilglicosamina/metabolismo
8.
Proteins ; 90(8): 1594-1605, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35277885

RESUMO

Acinetobacter baumannii is a Gram-negative bacterium commonly found in soil and water that can cause human infections of the blood, lungs, and urinary tract. Of particular concern is its prevalence in health-care settings where it can survive on surfaces and shared equipment for extended periods of time. The capsular polysaccharide surrounding the organism is known to be the major contributor to virulence. The structure of the K57 capsular polysaccharide produced by A. baumannii isolate BAL_212 from Vietnam was recently shown to contain the rare sugar 4-acetamido-4,6-dideoxy-d-glucose. Three enzymes are required for its biosynthesis, one of which is encoded by the gene H6W49_RS17300 and referred to as VioB, a putative N-acetyltransferase. Here, we describe a combined structural and functional analysis of VioB. Kinetic analyses show that the enzyme does, indeed, function on dTDP-4-amino-4,6-dideoxy-d-glucose with a catalytic efficiency of 3.9 x 104  M-1  s-1 (±6000), albeit at a reduced value compared to similar enzymes. Three high-resolution X-ray structures of various enzyme/ligand complexes were determined to resolutions of 1.65 Å or better. One of these models represents an intermediate analogue of the tetrahedral transition state. Differences between the VioB structure and those determined for the N-acetyltransferases from Campylobacter jejuni (PglD), Caulobacter crescentus (PerB), and Psychrobacter cryohalolentis (Pcryo_0637) are highlighted. Taken together, this investigation sheds new insight into the Type I sugar N-acetyltransferases.


Assuntos
Acinetobacter baumannii , Acetiltransferases/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Catálise , Humanos , Cinética , Açúcares
9.
Biochemistry ; 60(19): 1552-1563, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33900734

RESUMO

Campylobacter jejuni is the leading cause of food poisoning in the United States and Europe. The exterior cell surface of C. jejuni is coated with a capsular polysaccharide (CPS) that is essential for the maintenance and integrity of the bacterial cell wall and evasion of the host immune response. The identity and sequences of the monosaccharide components of the CPS are quite variable and dependent on the specific strain of C. jejuni. It is currently thought that the immediate precursor for the multiple variations found in the heptose moieties of the C. jejuni CPS is GDP-d-glycero-α-d-manno-heptose. In C. jejuni NCTC 11168, the heptose moiety is d-glycero-l-gluco-heptose. It has previously been shown that Cj1427 catalyzes the oxidation of GDP-d-glycero-α-d-manno-heptose to GDP-d-glycero-4-keto-α-d-lyxo-heptose using α-ketoglutarate as a cosubstrate. Cj1430 was now demonstrated to catalyze the double epimerization of this product at C3 and C5 to form GDP-d-glycero-4-keto-ß-l-xylo-heptose. Cj1428 subsequently catalyzes the stereospecific reduction of this GDP-linked heptose by NADPH to form GDP-d-glycero-ß-l-gluco-heptose. The three-dimensional crystal structure of Cj1430 was determined to a resolution of 1.85 Å in the presence of bound GDP-d-glycero-ß-l-gluco-heptose, a product analogue. The structure shows that it belongs to the cupin superfamily. The three-dimensional crystal structure of Cj1428 was solved in the presence of NADPH to a resolution of 1.50 Å. Its fold places it into the short-chain dehydrogenase/reductase superfamily. Typically, members in this family display a characteristic signature sequence of YXXXK, with the conserved tyrosine serving a key role in catalysis. In Cj1428, this residue is a phenylalanine.


Assuntos
Campylobacter jejuni/metabolismo , Heptoses/biossíntese , Proteínas de Bactérias/química , Campylobacter jejuni/patogenicidade , Guanosina Difosfato/metabolismo , Heptoses/química , Heptoses/metabolismo , Ácidos Cetoglutáricos/metabolismo , Monossacarídeos/metabolismo , Oxirredutases/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo
10.
Biochemistry ; 59(13): 1314-1327, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32168450

RESUMO

Many strains of Campylobacter jejuni display modified heptose residues in their capsular polysaccharides (CPS). The precursor heptose was previously shown to be GDP-d-glycero-α-d-manno-heptose, from which a variety of modifications of the sugar moiety have been observed. These modifications include the generation of 6-deoxy derivatives and alterations of the stereochemistry at C3-C6. Previous work has focused on the enzymes responsible for the generation of the 6-deoxy derivatives and those involved in altering the stereochemistry at C3 and C5. However, the generation of the 6-hydroxyl heptose residues remains uncertain due to the lack of a specific enzyme to catalyze the initial oxidation at C4 of GDP-d-glycero-α-d-manno-heptose. Here we reexamine the previously reported role of Cj1427, a dehydrogenase found in C. jejuni NTCC 11168 (HS:2). We show that Cj1427 is co-purified with bound NADH, thus hindering catalysis of oxidation reactions. However, addition of a co-substrate, α-ketoglutarate, converts the bound NADH to NAD+. In this form, Cj1427 catalyzes the oxidation of l-2-hydroxyglutarate back to α-ketoglutarate. The crystal structure of Cj1427 with bound GDP-d-glycero-α-d-manno-heptose shows that the NAD(H) cofactor is ideally positioned to catalyze the oxidation at C4 of the sugar substrate. Additionally, the overall fold of the Cj1427 subunit places it into the well-defined short-chain dehydrogenase/reductase superfamily. The observed quaternary structure of the tetrameric enzyme, however, is highly unusual for members of this superfamily.


Assuntos
Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , Heptoses/biossíntese , NAD/metabolismo , Oxirredutases/química , Polissacarídeos Bacterianos/metabolismo , Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Heptoses/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Polissacarídeos Bacterianos/química
11.
Biochemistry ; 58(31): 3340-3353, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31322866

RESUMO

The ydj gene cluster is found in 80% of sequenced Escherichia coli genomes and other closely related species in the human microbiome. On the basis of the annotations of the enzymes located in this cluster, it is expected that together they catalyze the catabolism of an unknown carbohydrate. The focus of this investigation is on YdjI, which is in the ydj gene cluster of E. coli K-12. It is predicted to be a class II aldolase of unknown function. Here we describe a structural and functional characterization of this enzyme. YdjI catalyzes the hydrogen/deuterium exchange of the pro-S hydrogen at C3 of dihydroxyacetone phosphate (DHAP). In the presence of DHAP, YdjI catalyzes an aldol condensation with a variety of aldo sugars. YdjI shows a strong preference for higher-order (seven-, eight-, and nine-carbon) monosaccharides with specific hydroxyl stereochemistries and a negatively charged terminus (carboxylate or phosphate). The best substrate is l-arabinuronic acid with an apparent kcat of 3.0 s-1. The product, l-glycero-l-galacto-octuluronate-1-phosphate, has a kcat/Km value of 2.1 × 103 M-1 s-1 in the retro-aldol reaction with YdjI. This is the first recorded synthesis of l-glycero-l-galacto-octuluronate-1-phosphate and six similar carbohydrates. The crystal structure of YdjI, determined to a nominal resolution of 1.75 Å (Protein Data Bank entry 6OFU ), reveals unusual positions for two arginine residues located near the active site. Computational docking was utilized to distinguish preferable binding orientations for l-glycero-l-galacto-octuluronate-1-phosphate. These results indicate a possible alternative binding orientation for l-glycero-l-galacto-octuluronate-1-phosphate compared to that observed in other class II aldolases, which utilize shorter carbohydrate molecules.


Assuntos
Aldeído Liases/química , Aldeído Liases/metabolismo , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Biocatálise , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
12.
Biochemistry ; 56(29): 3818-3825, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28665588

RESUMO

The causative agent of tuberculosis, Mycobacterium tuberculosis, is a bacterium with a complex cell wall and a complicated life cycle. The genome of M. tuberculosis contains well over 4000 genes thought to encode proteins. One of these codes for a putative enzyme referred to as Rv3404c, which has attracted research attention as a potential virulence factor for over 12 years. Here we demonstrate that Rv3404c functions as a sugar N-formyltransferase that converts dTDP-4-amino-4,6-dideoxyglucose into dTDP-4-formamido-4,6-dideoxyglucose using N10-formyltetrahydrofolate as the carbon source. Kinetic analyses demonstrate that Rv3404c displays a significant catalytic efficiency of 1.1 × 104 M-1 s-1. In addition, we report the X-ray structure of a ternary complex of Rv3404c solved in the presence of N5-formyltetrahydrofolate and dTDP-4-amino-4,6-dideoxyglucose. The final model of Rv3404c was refined to an overall R-factor of 16.8% at 1.6 Å resolution. The results described herein are especially intriguing given that there have been no published reports of N-formylated sugars associated with M. tuberculosis. The data thus provide a new avenue of research into this fascinating, yet deadly, organism that apparently has been associated with human infection since ancient times.


Assuntos
Proteínas de Bactérias/química , Hidroximetil e Formil Transferases/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Fatores de Virulência/química , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Desoxiaçúcares/química , Desoxiaçúcares/metabolismo , Formiltetra-Hidrofolatos/química , Formiltetra-Hidrofolatos/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Cinética , Mycobacterium tuberculosis/patogenicidade , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo , Fatores de Virulência/metabolismo
13.
Biochemistry ; 56(28): 3657-3668, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28636341

RESUMO

It has become increasingly apparent within the last several years that unusual N-formylated sugars are often found on the O-antigens of such Gram negative pathogenic organisms as Francisella tularensis, Campylobacter jejuni, and Providencia alcalifaciens, among others. Indeed, in some species of Brucella, for example, the O-antigen contains 1,2-linked 4-formamido-4,6-dideoxy-α-d-mannosyl groups. These sugars, often referred to as N-formylperosamine, are synthesized in pathways initiating with GDP-mannose. One of the enzymes required for the production of N-formylperosamine, namely, WbkC, was first identified in 2000 and was suggested to function as an N-formyltransferase. Its biochemical activity was never experimentally verified, however. Here we describe a combined structural and functional investigation of WbkC from Brucella melitensis. Four high resolution X-ray structures of WbkC were determined in various complexes to address its active site architecture. Unexpectedly, the quaternary structure of WbkC was shown to be different from that previously observed for other sugar N-formyltransferases. Additionally, the structures revealed a second binding site for a GDP molecule distinct from that required for GDP-perosamine positioning. In keeping with this additional binding site, kinetic data with the wild type enzyme revealed complex patterns. Removal of GDP binding by mutating Phe 142 to an alanine residue resulted in an enzyme variant displaying normal Michaelis-Menten kinetics. These data suggest that this nucleotide binding pocket plays a role in enzyme regulation. Finally, by using an alternative substrate, we demonstrate that WbkC can be utilized to produce a trideoxysugar not found in nature.


Assuntos
Brucella melitensis/enzimologia , Hidroximetil e Formil Transferases/metabolismo , Sítios de Ligação , Brucella melitensis/química , Brucelose/microbiologia , Domínio Catalítico , Cristalografia por Raios X , Guanosina Difosfato/metabolismo , Hexosaminas/metabolismo , Humanos , Hidroximetil e Formil Transferases/química , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
14.
Biochemistry ; 56(45): 6030-6040, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29053280

RESUMO

Within recent years it has become apparent that protein glycosylation is not limited to eukaryotes. Indeed, in Campylobacter jejuni, a Gram-negative bacterium, more than 60 of its proteins are known to be glycosylated. One of the sugars found in such glycosylated proteins is 2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, hereafter referred to as QuiNAc4NAc. The pathway for its biosynthesis, initiating with UDP-GlcNAc, requires three enzymes referred to as PglF, PglE, and PlgD. The focus of this investigation is on PglF, an NAD+-dependent sugar 4,6-dehydratase known to belong to the short chain dehydrogenase/reductase (SDR) superfamily. Specifically, PglF catalyzes the first step in the pathway, namely, the dehydration of UDP-GlcNAc to UDP-2-acetamido-2,6-dideoxy-α-d-xylo-hexos-4-ulose. Most members of the SDR superfamily contain a characteristic signature sequence of YXXXK where the conserved tyrosine functions as a catalytic acid or a base. Strikingly, in PglF, this residue is a methionine. Here we describe a detailed structural and functional investigation of PglF from C. jejuni. For this investigation five X-ray structures were determined to resolutions of 2.0 Å or better. In addition, kinetic analyses of the wild-type and site-directed variants were performed. On the basis of the data reported herein, a new catalytic mechanism for a SDR superfamily member is proposed that does not require the typically conserved tyrosine residue.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/enzimologia , Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Catálise , Clonagem Molecular , Cristalografia por Raios X , Cinética , Oxirredutases/química , Oxirredutases/metabolismo , Especificidade por Substrato
15.
J Struct Biol ; 200(3): 267-278, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28263875

RESUMO

N-formylated sugars are found on the lipopolysaccharides of various pathogenic Gram negative bacteria including Campylobacter jejuni 81116, Francisella tularensis, Providencia alcalifaciens O30, and Providencia alcalifaciens O40. The last step in the biosynthetic pathways for these unusual sugars is catalyzed by N-formyltransferases that utilize N10-formyltetrahydrofolate as the carbon source. The substrates are dTDP-linked amino sugars with the functional groups installed at either the C-3' or C-4' positions of the pyranosyl rings. Here we describe a structural and enzymological investigation of the putative N-formyltransferase, FdtF, from Salmonella enterica O60. In keeping with its proposed role in the organism, the kinetic data reveal that the enzyme is more active with dTDP-3-amino-3,6-dideoxy-d-galactose than with dTDP-3-amino-3,6-dideoxy-d-glucose. The structural data demonstrate that the enzyme contains, in addition to the canonical N-formyltransferase fold, an ankyrin repeat moiety that houses a second dTDP-sugar binding pocket. This is only the second time an ankyrin repeat has been shown to be involved in small molecule binding. The research described herein represents the first structural analysis of a sugar N-formyltransferase that specifically functions on dTDP-3-amino-3,6-dideoxy-d-galactose in vivo and thus adds to our understanding of these intriguing enzymes.


Assuntos
Proteínas de Bactérias/química , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/metabolismo , Salmonella enterica/enzimologia , Amino Açúcares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Hidroximetil e Formil Transferases/genética , Cinética , Modelos Moleculares , Conformação Proteica
16.
Glycobiology ; 27(4): 358-369, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28096310

RESUMO

The Gram-negative bacterium Campylobacter jejuni 81116 (Penner serotype HS:6) has a class E lipooligosaccharide (LOS) biosynthesis locus containing 19 genes, which encode for 11 putative glycosyltransferases, 1 lipid A acyltransferase and 7 enzymes thought to be involved in the biosynthesis of dideoxyhexosamine (ddHexN) moieties. Although the LOS outer core structure of C. jejuni 81116 is still unknown, recent mass spectrometry analyses suggest that it contains acetylated forms of two ddHexN residues. For this investigation, five of the genes encoding enzymes reportedly involved in the biosyntheses of these sugar residues were examined, rmlA, rmlB, wlaRA, wlaRB and wlaRG. Specifically, these genes were cloned and expressed in Escherichia coli, and the corresponding enzymes were purified and tested for biochemical activity. Here we present data demonstrating that RmlA functions as a glucose-1-phosphate thymidylyltransferase and that RmlB is a thymidine diphosphate (dTDP)-glucose 4,6-dehydratase. We also show, through nuclear magnetic resonance spectroscopy and mass spectrometry analyses, that WlaRG, when utilized in coupled assays with either WlaRA or WlaRB and dTDP-4-keto-6-deoxyglucose, results in the production of either dTDP-3-amino-3,6-dideoxy-d-galactose (dTDP-Fuc3N) or dTDP-3-amino-3,6-dideoxy-d-glucose (dTDP-Qui3N), respectively. In addition, the X-ray crystallographic structures of the 3,4-ketoisomerases, WlaRA and WlaRB, were determined to 2.14 and 2.0 Å resolutions, respectively. Taken together, the data reported herein demonstrate that C. jejuni 81116 utilizes five enzymes to synthesize dTDP-Fuc3N or dTDP-Qui3N and that WlaRG, an aminotransferase, can function on sugars with differing stereochemistry about their C-4' carbons. Importantly, the data reveal that C. jejuni 81116 has the ability to synthesize two isomeric ddHexN forms.


Assuntos
Aciltransferases/genética , Campylobacter jejuni/genética , Galactose/genética , Glicosiltransferases/genética , Nucleotidiltransferases/genética , Aciltransferases/química , Aciltransferases/metabolismo , Vias Biossintéticas/genética , Campylobacter jejuni/enzimologia , Cristalografia por Raios X , Escherichia coli/genética , Galactose/química , Galactose/metabolismo , Glucose/química , Glucose/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo
17.
Biochemistry ; 55(32): 4509-18, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27404806

RESUMO

Enzymes belonging to the GNAT superfamily are widely distributed in nature where they play key roles in the transfer of acyl groups from acyl-CoAs to primary amine acceptors. The amine acceptors run the gamut from histones to aminoglycoside antibiotics to small molecules such as serotonin. Whereas those family members that function on histones have been extensively studied, the GNAT enzymes that employ nucleotide-linked sugars as their substrates have not been well characterized. Indeed, though the structures of two of these "amino sugar" GNAT enzymes have been determined within the past 10 years, details concerning their active site architectures have been limited because of a lack of bound nucleotide-linked sugar substrates. Here we describe a combined structural and biochemical analysis of FdhC from Acinetobacter nosocomialis O2. On the basis of bioinformatics, it was postulated that FdhC catalyzes the transfer of a 3-hydroxybutanoyl group from 3-hydroxylbutanoyl-CoA to dTDP-3-amino-3,6-dideoxy-d-galactose, to yield an unusual sugar that is ultimately incorporated into the surface polysaccharides of the bacterium. We present data confirming this activity. In addition, the structures of two ternary complexes of FdhC, in the presence of CoA and either 3-hydroxybutanoylamino-3,6-dideoxy-d-galactose or 3-hydroxybutanoylamino-3,6-dideoxy-d-glucose, were solved by X-ray crystallographic analyses to high resolution. Kinetic parameters were determined, and activity assays demonstrated that FdhC can also utilize acetyl-CoA, 3-methylcrotonyl-CoA, or hexanoyl-CoA as acyl donors, albeit at reduced rates. Site-directed mutagenesis experiments were conducted to probe the catalytic mechanism of FdhC. Taken together, the data presented herein provide significantly new molecular insight into those GNAT superfamily members that function on nucleotide-linked amino sugars.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Acinetobacter/enzimologia , Biocatálise , Cinética , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta
18.
Biochemistry ; 55(32): 4485-94, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27275764

RESUMO

8-Amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N) is a unique amino sugar that has thus far only been observed on the lipopolysaccharides of marine bacteria belonging to the genus Shewanella. Although its biological function is still unclear, it is thought that the sugar is important for the integrity of the bacterial cell outer membrane. A three-gene cluster required for the biosynthesis of Kdo8N was first identified in Shewanella oneidensis. Here we describe the three-dimensional structures of two of the enzymes required for Kdo8N biosynthesis in S. oneidensis, namely, KdnB and KdnA. The structure of KdnB was solved to 1.85-Å resolution, and its overall three-dimensional architecture places it into the Group III alcohol dehydrogenase superfamily. A previous study suggested that KdnB did not require NAD(P) for activity. Strikingly, although the protein was crystallized in the absence of any cofactors, the electron density map clearly revealed the presence of a tightly bound NAD(H). In addition, a bound metal was observed, which was shown via X-ray fluorescence to be a zinc ion. Unlike other members of the Group III alcohol dehydrogenases, the dinucleotide cofactor in KdnB is tightly bound and cannot be removed without leading to protein precipitation. With respect to KdnA, it is a pyridoxal 5'-phosphate or (PLP)-dependent aminotransferase. For this analysis, the structure of KdnA, trapped in the presence of the external aldimine with PLP and glutamate, was determined to 2.15-Å resolution. The model of KdnA represents the first structure of a sugar aminotransferase that functions on an 8-oxo sugar. Taken together the results reported herein provide new molecular insight into the biosynthesis of Kdo8N.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Shewanella/enzimologia , Açúcares Ácidos/metabolismo , Transaminases/química , Transaminases/metabolismo , Domínio Catalítico , Modelos Moleculares , Shewanella/metabolismo
19.
Biochemistry ; 55(32): 4495-508, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27348258

RESUMO

Glucosamine/glucosaminide N-acetyltransferase or GlmA catalyzes the transfer of an acetyl group from acetyl CoA to the primary amino group of glucosamine. The enzyme from Clostridium acetobutylicum is thought to be involved in cell wall rescue. In addition to glucosamine, GlmA has been shown to function on di- and trisaccharides of glucosamine as well. Here we present a structural and kinetic analysis of the enzyme. For this investigation, eight structures were determined to resolutions of 2.0 Å or better. The overall three-dimensional fold of GlmA places it into the tandem GNAT superfamily. Each subunit of the dimer folds into two distinct domains which exhibit high three-dimensional structural similarity. Whereas both domains bind acetyl CoA, it is the C-terminal domain that is catalytically competent. On the basis of the various structures determined in this investigation, two amino acid residues were targeted for further study: Asp 287 and Tyr 297. Although their positions in the active site suggested that they may play key roles in catalysis by functioning as active site bases and acids, respectively, this was not borne out by characterization of the D287N and Y297F variants. The kinetic properties revealed that both residues were important for substrate binding but had no critical roles as acid/base catalysts. Kinetic analyses also indicated that GlmA follows an ordered mechanism with acetyl CoA binding first followed by glucosamine. The product N-acetylglucosamine is then released prior to CoA. The investigation described herein provides significantly new information on enzymes belonging to the tandem GNAT superfamily.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Glucosamina/metabolismo , Acetiltransferases/genética , Clostridium acetobutylicum/enzimologia , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos
20.
Biochemistry ; 54(3): 631-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25574689

RESUMO

N-Formylated sugars such as 3,6-dideoxy-3-formamido-d-glucose (Qui3NFo) have been observed on the lipopolysaccharides of various pathogenic bacteria, including Providencia alcalifaciens, a known cause of gastroenteritis. These unusual carbohydrates are synthesized in vivo as dTDP-linked sugars. The biosynthetic pathway for the production of dTDP-Qui3NFo requires five enzymes with the last step catalyzed by an N-formyltransferase that utilizes N(10)-tetrahydrofolate as a cofactor. Here we describe a structural and functional investigation of the P. alcalifaciens N-formyltransferase, hereafter referred to as QdtF. For this analysis, the structure of the dimeric enzyme was determined in the presence of N(5)-formyltetrahydrofolate, a stable cofactor, and dTDP-3,6-dideoxy-3-amino-d-glucose (dTDP-Qui3N) to 1.5 Å resolution. The overall fold of the subunit consists of three regions with the N-terminal and middle motifs followed by an ankyrin repeat domain. Whereas the ankyrin repeat is a common eukaryotic motif involved in protein-protein interactions, reports of its presence in prokaryotic enzymes have been limited. Unexpectedly, this ankyrin repeat houses a second binding pocket for dTDP-Qui3N, which is characterized by extensive interactions between the protein and the ligand. To address the effects of this second binding site on catalysis, a site-directed mutant protein, W305A, was constructed. Kinetic analyses demonstrated that the catalytic activity of the W305A variant was reduced by approximately 7-fold. The structure of the W305A mutant protein in complex with N(5)-formyltetrahydrofolate and dTDP-Qui3N was subsequently determined to 1.5 Å resolution. The electron density map clearly showed that ligand binding had been completely abolished in the auxiliary pocket. The wild-type enzyme was also tested for activity against dTDP-3,6-dideoxy-3-amino-d-galactose (dTDP-Fuc3N) as a substrate. Strikingly, sigmoidal kinetics indicating homotropic allosteric behavior were observed. Although the identity of the ligand that regulates QdtF activity in vivo is at present unknown, our results still provide the first example of an ankyrin repeat functioning in small molecule binding.


Assuntos
Repetição de Anquirina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidroximetil e Formil Transferases/química , Hidroximetil e Formil Transferases/metabolismo , Providencia/enzimologia , Sítio Alostérico , Domínio Catalítico , Cinética , Ligantes , Modelos Moleculares , Eletricidade Estática , Relação Estrutura-Atividade , Especificidade por Substrato , Nucleotídeos de Timina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA