Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Nucleic Acids Res ; 52(1): 370-384, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994783

RESUMO

The phospholipase D (PLD) family is comprised of enzymes bearing phospholipase activity towards lipids or endo- and exonuclease activity towards nucleic acids. PLD3 is synthesized as a type II transmembrane protein and proteolytically cleaved in lysosomes, yielding a soluble active form. The deficiency of PLD3 leads to the slowed degradation of nucleic acids in lysosomes and chronic activation of nucleic acid-specific intracellular toll-like receptors. While the mechanism of PLD phospholipase activity has been extensively characterized, not much is known about how PLDs bind and hydrolyze nucleic acids. Here, we determined the high-resolution crystal structure of the luminal N-glycosylated domain of human PLD3 in its apo- and single-stranded DNA-bound forms. PLD3 has a typical phospholipase fold and forms homodimers with two independent catalytic centers via a newly identified dimerization interface. The structure of PLD3 in complex with an ssDNA-derived thymidine product in the catalytic center provides insights into the substrate binding mode of nucleic acids in the PLD family. Our structural data suggest a mechanism for substrate binding and nuclease activity in the PLD family and provide the structural basis to design immunomodulatory drugs targeting PLD3.


Assuntos
Exodesoxirribonucleases , Fosfolipase D , Humanos , Lisossomos/metabolismo , Fosfolipase D/química , Fosfolipases , Exodesoxirribonucleases/química
2.
EMBO J ; 40(24): e108542, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34612526

RESUMO

Bacterial small RNAs (sRNAs) are well known to modulate gene expression by base pairing with trans-encoded transcripts and are typically non-coding. However, several sRNAs have been reported to also contain an open reading frame and thus are considered dual-function RNAs. In this study, we discovered a dual-function RNA from Vibrio cholerae, called VcdRP, harboring a 29 amino acid small protein (VcdP), as well as a base-pairing sequence. Using a forward genetic screen, we identified VcdRP as a repressor of cholera toxin production and link this phenotype to the inhibition of carbon transport by the base-pairing segment of the regulator. By contrast, we demonstrate that the VcdP small protein acts downstream of carbon transport by binding to citrate synthase (GltA), the first enzyme of the citric acid cycle. Interaction of VcdP with GltA results in increased enzyme activity and together VcdR and VcdP reroute carbon metabolism. We further show that transcription of vcdRP is repressed by CRP allowing us to provide a model in which VcdRP employs two different molecular mechanisms to synchronize central metabolism in V. cholerae.


Assuntos
Carbono/metabolismo , Toxina da Cólera/metabolismo , Citrato (si)-Sintase/metabolismo , RNA Bacteriano/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Testes Genéticos , Fases de Leitura Aberta , Fenótipo , RNA Bacteriano/metabolismo , Vibrio cholerae/genética
3.
Proteomics ; 24(3-4): e2200542, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36815320

RESUMO

In top-down (TD) proteomics, efficient proteoform separation is crucial to reduce the sample complexity and increase the depth of the analysis. Here, we developed a two-dimensional low pH/low pH reversed-phase liquid chromatography separation scheme for TD proteomics. The first dimension for offline fractionation was performed using a polymeric reversed-phase (PLRP-S) column with trifluoroacetic acid as ion-pairing reagent. The second dimension, a C4 nanocolumn with formic acid as ion-pairing reagent, was coupled online with a high-field asymmetric ion mobility spectrometry (FAIMS) Orbitrap Tribrid mass spectrometer. For both dimensions several parameters were optimized, such as the adaption of the LC gradients in the second dimension according to the elution time (i.e., fraction number) in the first dimension. Avoidance of elevated temperatures and prolonged exposure to acidic conditions minimized cleavage of acid labile aspartate-proline peptide bonds. Furthermore, a concatenation strategy was developed to reduce the total measurement time. We compared our low/low pH with a previously published high pH (C4, ammonium formate)/low pH strategy and found that both separation strategies led to complementary proteoform identifications, mainly below 20 kDa, with a higher number of proteoforms identified by the low/low pH separation. With the optimized separation scheme, more than 4900 proteoforms from 1250 protein groups were identified in Caco-2 cells.


Assuntos
Cromatografia de Fase Reversa , Proteômica , Humanos , Cromatografia de Fase Reversa/métodos , Proteômica/métodos , Células CACO-2 , Espectrometria de Massa com Cromatografia Líquida , Concentração de Íons de Hidrogênio
4.
Proteomics ; 24(3-4): e2300068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997224

RESUMO

Top-down proteomics (TDP) directly analyzes intact proteins and thus provides more comprehensive qualitative and quantitative proteoform-level information than conventional bottom-up proteomics (BUP) that relies on digested peptides and protein inference. While significant advancements have been made in TDP in sample preparation, separation, instrumentation, and data analysis, reliable and reproducible data analysis still remains one of the major bottlenecks in TDP. A key step for robust data analysis is the establishment of an objective estimation of proteoform-level false discovery rate (FDR) in proteoform identification. The most widely used FDR estimation scheme is based on the target-decoy approach (TDA), which has primarily been established for BUP. We present evidence that the TDA-based FDR estimation may not work at the proteoform-level due to an overlooked factor, namely the erroneous deconvolution of precursor masses, which leads to incorrect FDR estimation. We argue that the conventional TDA-based FDR in proteoform identification is in fact protein-level FDR rather than proteoform-level FDR unless precursor deconvolution error rate is taken into account. To address this issue, we propose a formula to correct for proteoform-level FDR bias by combining TDA-based FDR and precursor deconvolution error rate.


Assuntos
Peptídeos , Proteômica , Proteínas de Ligação a DNA
5.
Proteomics ; 24(3-4): e2200431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37548120

RESUMO

Middle-down proteomics (MDP) is an analytical approach in which protein samples are digested with proteases such as Glu-C to generate large peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful for characterizing high-molecular-weight proteins that are difficult to detect by top-down proteomics (TDP), in which intact proteins are analyzed by MS. In this study, we applied GeLC-FAIMS-MS, a multidimensional separation workflow that combines gel-based prefractionation with LC-FAIMS MS, for deep MDP. Middle-down peptides generated by optimized limited Glu-C digestion conditions were first size-fractionated by polyacrylamide gel electrophoresis, followed by C4 reversed-phase liquid chromatography separation and additional ion mobility fractionation, resulting in a significant increase in peptide length detectable by MS. In addition to global analysis, the GeLC-FAIMS-MS concept can also be applied to targeted MDP, where only proteins in the desired molecular weight range are gel-fractionated and their Glu-C digestion products are analyzed, as demonstrated by targeted analysis of integrins in exosomes. In-depth MDP achieved by global and targeted GeLC-FAIMS-MS supports the exploration of proteoform information not covered by conventional TDP by increasing the number of detectable protein groups or post-translational modifications (PTMs) and improving the sequence coverage.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Fluxo de Trabalho , Peptídeos/análise , Proteínas de Ligação a DNA
6.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35373296

RESUMO

Detyrosination is a major post-translational modification of microtubules (MTs), which has significant impact on MT function in cell division, differentiation, growth, migration and intracellular trafficking. Detyrosination of α-tubulin occurs mostly via the recently identified complex of vasohibin 1 or 2 (VASH1 and VASH2, respectively) with small vasohibin binding protein (SVBP). However, there is still remaining detyrosinating activity in the absence of VASH1 and/or VASH2 and SVBP, and little is known about the regulation of detyrosination. Here, we found that intracellular Ca2+ is required for efficient MT detyrosination. Furthermore, we show that the Ca2+-dependent proteases calpains 1 and 2 (CAPN1 and CAPN2, respectively) regulate MT detyrosination in VASH1- and SVBP-overexpressing human embryonic kidney (HEK293T) cells. We identified new calpain cleavage sites in the N-terminal disordered region of VASH1. However, this cleavage did not affect the enzymatic activity of vasohibins. In conclusion, we suggest that the regulation of VASH1-mediated MT detyrosination by calpains could occur independently of vasohibin catalytic activity or via another yet unknown tubulin carboxypeptidase. Importantly, the Ca2+ dependency of calpains could allow a fine regulation of MT detyrosination. Thus, identifying the calpain-regulated pathway of MT detyrosination can be of major importance for basic and clinical research.


Assuntos
Cálcio , Calpaína , Proteínas Angiogênicas/metabolismo , Cálcio/metabolismo , Calpaína/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
7.
Cell Mol Life Sci ; 80(3): 59, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36749362

RESUMO

BACKGROUND AND AIMS: Apolipoprotein E (APOE) is known for its role in lipid metabolism and its association with age-related disease pathology. The aim of the present work was to identify previously unknown functions of APOE based on the detection of novel APOE protein-protein interaction candidates. APPROACH AND RESULTS: APOE targeted replacement mice and transfected cultured hepatocytes expressing the human isoforms APOE3 and APOE4 were used. For 7 months, APOE3 and APOE4 mice were fed a high-fat and high-sugar diet to induce obesity, while a subgroup was subjected to 30% dietary restriction. Proteomic analysis of coimmunoprecipitation products from APOE mouse liver extracts revealed 28 APOE-interacting candidate proteins, including branched-chain alpha-keto acid dehydrogenase (BCKD) complex subunit alpha (BCKDHA) and voltage-dependent anion-selective channel 1 (VDAC1). The binding of APOE and BCKDHA was verified in situ by proximity ligation assay in cultured cells. The activity of the BCKD enzyme complex was significantly higher in obese APOE4 mice than in APOE3 mice, while the plasma levels of branched-chain amino acids and mTOR signalling proteins were not different. However, the protein-protein interaction with VDAC1 was strongly induced in APOE3 and APOE4 mice upon dietary restriction, suggesting a prominent role of APOE in mitochondrial function. CONCLUSIONS: The protein-protein interactions of APOE with BCKDHA and VDAC1 appear to be of physiological relevance and are modulated upon dietary restriction. Because these are mitochondrial proteins, it may be suggested that APOE is involved in mitochondria-related processes and adaptation to hepatic energy demands.


Assuntos
Apolipoproteína E4 , Proteômica , Camundongos , Humanos , Animais , Apolipoproteína E4/metabolismo , Apolipoproteína E3/metabolismo , Apolipoproteínas E/metabolismo , Fígado/metabolismo , Células Cultivadas , Mitocôndrias/metabolismo , Proteínas de Transporte/metabolismo , Camundongos Transgênicos
8.
Cell Mol Life Sci ; 80(9): 258, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594630

RESUMO

HtrA2/Omi is a mitochondrial serine protease with ascribed pro-apoptotic as well as pro-necroptotic functions. Here, we establish that HtrA2/Omi also controls parthanatos, a third modality of regulated cell death. Deletion of HtrA2/Omi protects cells from parthanatos while reconstitution with the protease restores the parthanatic death response. The effects of HtrA2/Omi on parthanatos are specific and cannot be recapitulated by manipulating other mitochondrial proteases such as PARL, LONP1 or PMPCA. HtrA2/Omi controls parthanatos in a manner mechanistically distinct from its action in apoptosis or necroptosis, i.e., not by cleaving cytosolic IAP proteins but rather exerting its effects without exiting mitochondria, and downstream of PARP-1, the first component of the parthanatic signaling cascade. Also, previously identified or candidate substrates of HtrA2/Omi such as PDXDC1, VPS4B or moesin are not cleaved and dispensable for parthanatos, whereas DBC-1 and stathmin are cleaved, and thus represent potential parthanatic downstream mediators of HtrA2/Omi. Moreover, mass-spectrometric screening for novel parthanatic substrates of HtrA2/Omi revealed that the induction of parthanatos does not cause a substantial proteolytic cleavage or major alterations in the abundance of mitochondrial proteins. Resolving these findings, reconstitution of HtrA2/Omi-deficient cells with a catalytically inactive HtrA2/Omi mutant restored their sensitivity against parthanatos to the same level as the protease-active HtrA2/Omi protein. Additionally, an inhibitor of HtrA2/Omi's protease activity did not confer protection against parthanatic cell death. Our results demonstrate that HtrA2/Omi controls parthanatos in a protease-independent manner, likely via novel, unanticipated functions as a scaffolding protein and an interaction with so far unknown mitochondrial proteins.


Assuntos
Parthanatos , Serina Proteases/genética , Necroptose , Serina Endopeptidases/genética , Proteínas Mitocondriais/genética
9.
EMBO J ; 38(20): e101266, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31544965

RESUMO

Inflammasomes are cytosolic protein complexes, which orchestrate the maturation of active IL-1ß by proteolytic cleavage via caspase-1. Although many principles of inflammasome activation have been described, mechanisms that limit inflammasome-dependent immune responses remain poorly defined. Here, we show that the thiol-specific peroxidase peroxiredoxin-4 (Prdx4) directly regulates IL-1ß generation by interfering with caspase-1 activity. We demonstrate that caspase-1 and Prdx4 form a redox-sensitive regulatory complex via caspase-1 cysteine 397 that leads to caspase-1 sequestration and inactivation. Mice lacking Prdx4 show an increased susceptibility to LPS-induced septic shock. This effect was phenocopied in mice carrying a conditional deletion of Prdx4 in the myeloid lineage (Prdx4-ΔLysMCre). Strikingly, we demonstrate that Prdx4 co-localizes with inflammasome components in extracellular vesicles (EVs) from inflammasome-activated macrophages. Purified EVs are able to transmit a robust IL-1ß-dependent inflammatory response in vitro and also in recipient mice in vivo. Loss of Prdx4 boosts the pro-inflammatory potential of EVs. These findings identify Prdx4 as a critical regulator of inflammasome activity and provide new insights into remote cell-to-cell communication function of inflammasomes via macrophage-derived EVs.


Assuntos
Caspase 1/metabolismo , Vesículas Extracelulares/metabolismo , Inflamassomos/imunologia , Macrófagos/imunologia , Peroxirredoxinas/fisiologia , Choque Séptico/prevenção & controle , Animais , Caspase 1/genética , Citocinas/metabolismo , Feminino , Inflamassomos/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Choque Séptico/patologia , Transdução de Sinais
10.
Cell Mol Life Sci ; 79(3): 185, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279766

RESUMO

Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Proteólise , Proteoma/análise , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Domínio Catalítico/genética , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , N-Acetilgalactosaminiltransferases/genética , Proteômica/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
11.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108455

RESUMO

Low serum levels of 1α, 25-dihydroxyvitamin D3 (VD3) are associated with a higher mortality in trauma patients with sepsis or ARDS. However, the molecular mechanisms behind this observation are not yet understood. VD3 is known to stimulate lung maturity, alveolar type II cell differentiation, or pulmonary surfactant synthesis and guides epithelial defense during infection. In this study, we investigated the impact of VD3 on the alveolar-capillary barrier in a co-culture model of alveolar epithelial cells and microvascular endothelial cells respectively in the individual cell types. After stimulation with bacterial LPS (lipopolysaccharide), gene expression of inflammatory cytokines, surfactant proteins, transport proteins, antimicrobial peptide, and doublecortin-like kinase 1 (DCLK1) were analyzed by real-time PCR, while corresponding proteins were evaluated by ELISA, immune-fluorescence, or Western blot. The effect of VD3 on the intracellular protein composition in H441 cells was analyzed by quantitative liquid chromatography-mass spectrometry-based proteomics. VD3 effectively protected the alveolar-capillary barrier against LPS treatment, as indicated by TEER measurement and morphological assessment. VD3 did not inhibit the IL-6 secretion by H441 and OEC but restricted the diffusion of IL-6 to the epithelial compartment. Further, VD3 could significantly suppress the surfactant protein A expression induced in the co-culture system by LPS treatment. VD3 induced high levels of the antimicrobial peptide LL-37, which counteracted effects by LPS and strengthened the barrier. Quantitative proteomics identified VD3-dependent protein abundance changes ranging from constitutional extracellular matrix components and surfactant-associated proteins to immune-regulatory molecules. DCLK1, as a newly described target molecule for VD3, was prominently stimulated by VD3 (10 nM) and seems to influence the alveolar-epithelial cell barrier and regeneration.


Assuntos
Células Endoteliais , Interleucina-6 , Humanos , Lipopolissacarídeos/farmacologia , Proteínas Associadas a Surfactantes Pulmonares , Células Epiteliais Alveolares , Tensoativos , Quinases Semelhantes a Duplacortina
12.
Angew Chem Int Ed Engl ; 62(28): e202301969, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37066813

RESUMO

While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.


Assuntos
Caenorhabditis elegans , Microfluídica , Animais , Caenorhabditis elegans/metabolismo , Proteoma/análise , Proteômica/métodos , Fenômenos Magnéticos , Mamíferos/metabolismo
13.
Proteomics ; 22(22): e2200189, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906788

RESUMO

Bacteroides thetaiotaomicron is a gram negative bacterium within the human gut microbiome that metabolizes a wide range of dietary and mucosal polysaccharides. Here, we analyze the proteome response of B. thetaiotaomicron cultivated on two different carbon sources, glucose and sucrose. Two quantitative LC-MS based proteomics approaches, encompassing label free quantification and isobaric labeling by tandem mass tags were applied. The results obtained by both workflows were compared with respect to the number of identified and quantified proteins, peptides supporting identification and quantification, sequence coverage, and reproducibility. A total of 1719 and 1696 proteins, respectively, were quantified, covering 35 % of the predicted B. thetaiotaomicron proteome. The data show that B. thetaiotaomicron widely maintains its intracellular proteome upon change of the carbohydrates and that major changes are observed solely in the machinery necessary to make use of the carbon sources provided. With respect to the central role of carbohydrates on gut health these data contribute to the understanding of how different carbohydrates contribute to shape bacterial community in the gut microbiome. All proteomics raw data have been uploaded to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD033704.


Assuntos
Bacteroides thetaiotaomicron , Humanos , Bacteroides thetaiotaomicron/metabolismo , Proteoma/metabolismo , Sacarose , Glucose/metabolismo , Reprodutibilidade dos Testes , Carbono/metabolismo
14.
J Proteome Res ; 21(9): 2185-2196, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35972260

RESUMO

Bottom-up proteomics (BUP)-based N-terminomics techniques have become standard to identify protein N-termini. While these methods rely on the identification of N-terminal peptides only, top-down proteomics (TDP) comes with the promise to provide additional information about post-translational modifications and the respective C-termini. To evaluate the potential of TDP for terminomics, two established TDP workflows were employed for the proteome analysis of the nematode Caenorhabditis elegans. The N-termini of the identified proteoforms were validated using a BUP-based N-terminomics approach. The TDP workflows used here identified 1658 proteoforms, the N-termini of which were verified by BUP in 25% of entities only. Caveats in both the BUP- and TDP-based workflows were shown to contribute to this low overlap. In BUP, the use of trypsin prohibits the detection of arginine-rich or arginine-deficient N-termini, while in TDP, the formation of artificially generated termini was observed in particular in a workflow encompassing sample treatment with high acid concentrations. Furthermore, we demonstrate the applicability of reductive dimethylation in TDP to confirm biological N-termini. Overall, our study shows not only the potential but also current limitations of TDP for terminomics studies and also presents suggestions for future developments, for example, for data quality control, allowing improvement of the detection of protein termini by TDP.


Assuntos
Proteoma , Proteômica , Arginina , Proteínas de Ligação a DNA , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Fluxo de Trabalho
15.
J Proteome Res ; 21(8): 1986-1996, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771142

RESUMO

Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.


Assuntos
Caenorhabditis elegans , Proteoma , Animais , Espectrometria de Mobilidade Iônica/métodos , Microfluídica , Proteoma/análise , Proteômica/métodos
16.
J Proteome Res ; 21(1): 20-29, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34818005

RESUMO

Top-down proteomics analyzes intact proteoforms with all of their post-translational modifications and genetic and RNA splice variants. In addition, modifications introduced either deliberately or inadvertently during sample preparation, that is, via oxidation, alkylation, or labeling reagents, or through the formation of noncovalent adducts (e.g., detergents) further increase the sample complexity. To facilitate the recognition of protein modifications introduced during top-down analysis, we developed MSTopDiff, a software tool with a graphical user interface written in Python, which allows one to detect protein modifications by calculating and visualizing mass differences in top-down data without the prerequisite of a database search. We demonstrate the successful application of MSTopDiff for the detection of artifacts originating from oxidation, formylation, overlabeling during isobaric labeling, and adduct formation with cations or sodium dodecyl sulfate. MSTopDiff offers several modes of data representation using deconvoluted MS1 or MS2 spectra. In addition to artificial modifications, the tool enables the visualization of biological modifications such as phosphorylation and acetylation. MSTopDiff provides an overview of the artificial and biological modifications in top-down proteomics samples, which makes it a valuable tool in quality control of standard workflows and for parameter evaluation during method development.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Acetilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Software
17.
Neurobiol Dis ; 175: 105919, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347423

RESUMO

Proteolysis catalyzed by the major lysosomal aspartyl protease cathepsin-D (CTSD) appears to be of pivotal importance for proteostasis within the central nervous system and in neurodegeneration. Neuronal Ceroid Lipofuscinosis (NCL) type 10 is caused by a lack of CTSD leading to a defective autophagic flow and pathological accumulation of proteins. We previously demonstrated a therapeutic-relevant clearance of protein aggregates after dosing a NCL10 mouse model with recombinant human pro-cathepsin-D (proCTSD). Similar results could be achieved in cells and mice accumulating α-synuclein. Prompted by these positive effects and our in vitro findings showing that cathepsin-D can cleave the Alzheimer's Disease (AD)-causing amyloid beta peptides (Aß), we envisaged that such a treatment with proCTSD could similarly be effective in clearance of potentially toxic Aß species. We demonstrated that CTSD is able to cleave human Aß1-42 by using liquid chromatography-mass spectrometry. Intracerebral dosing of proCTSD in a NCL10 (CTSD knockout) mouse model revealed uptake and processing of CTSD to its mature and active form. However, the re-addition of CTSD did not obviously affect intracellular APP processing or the generation of soluble APP and Aß-species. ProCTSD treated HEK cells in comparison with untreated cells were found to contain comparable levels of soluble and membrane bound APP and Aß-species. Also, the early intracranial application (P1 and P20) of proCTSD in the 5xFAD mouse model did not change Aß pathology, plaque number and plaque composition and neuroinflammation, however we observed an increased level of Aß1-42 in the CSF. Our data confirm proteolytic cleavage of human Aß1-42 by CTSD but exclude a prominent role of CTSD in APP processing and Aß degradation in our in vitro and in vivo models.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Humanos , Peptídeos beta-Amiloides/metabolismo , Catepsina D/metabolismo , Peptídeo Hidrolases , Placa Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Camundongos Knockout , Precursor de Proteína beta-Amiloide/metabolismo
18.
Anal Chem ; 94(37): 12815-12821, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069571

RESUMO

The combination of liquid chromatography (LC) and gas-phase separation by field-asymmetric ion mobility spectrometry (FAIMS) is a powerful proteoform separation system for top-down proteomics. Here, we present an in-depth top-down proteomics workflow, GeLC-FAIMS-MS, in which a molecular-weight-based proteome fractionation approach using SDS-polyacrylamide gel electrophoresis is performed prior to LC-FAIMS-MS. Since individual bands and their corresponding mass ranges require different compensating voltages (CVs), the MS parameters for each gel band and CV were optimized to increase the number and reliability of proteoform identifications further. We developed an easy-to-implement and inexpensive procedure combining the earlier established Passively Eluting Proteins from Polyacrylamide gels as Intact species (PEPPI) protocol with an optimized Anion-Exchange disk-assisted Sequential sample Preparation (AnExSP) method for the removal of stains and SDS. The protocol was compared with a methanol-chloroform-water (MCW)-based protein precipitation protocol. The results show that the PEPPI-AnExSP procedure is better suited for the identification of low-molecular-weight proteoforms, whereas the MCW-based protocol showed advantages for higher-molecular-weight proteoforms. Moreover, complementary results were observed with the two methods in terms of hydrophobicity and isoelectric points of the identified proteoforms. In total, 8500 proteoforms could be identified in a human proteome standard, showing the effectiveness of the gel-based sample fractionation approaches in combination with LC-FAIMS-MS.


Assuntos
Proteoma , Proteômica , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Mobilidade Iônica , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
19.
Anal Chem ; 94(8): 3600-3607, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35172570

RESUMO

In top-down (TD) proteomics, prefractionation prior to mass spectrometric (MS) analysis is a crucial step for both the high confidence identification of proteoforms and increased proteome coverage. In addition to liquid-phase separations, gas-phase fractionation strategies such as field asymmetric ion mobility spectrometry (FAIMS) have been shown to be highly beneficial in TD proteomics. However, so far, only external compensation voltage (CV) stepping has been demonstrated for TD proteomics, i.e., single CVs were applied for each run. Here, we investigated the use of internal CV stepping (multiple CVs per acquisition) for single-shot TD analysis, which has huge advantages in terms of measurement time and the amount of sample required. In addition, MS parameters were optimized for the individual CVs since different CVs target certain mass ranges. For example, small proteoforms identified mainly with more negative CVs can be identified with lower resolution and number of microscans than larger proteins identified primarily via less negative CVs. We investigated the optimal combination and number of CVs for different gradient lengths and validated the optimized settings with the low-molecular-weight proteome of CaCo-2 cells obtained using a range of different sample preparation techniques. Compared to measurements without FAIMS, both the number of identified protein groups (+60-94%) and proteoforms (+46-127%) and their confidence were significantly increased, while the measurement time remained identical. In total, we identified 684 protein groups and 2675 proteoforms from CaCo-2 cells in less than 24 h using the optimized multi-CV method.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Células CACO-2 , Humanos , Espectrometria de Massas , Proteoma , Proteômica/métodos
20.
FASEB J ; 35(7): e21677, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125978

RESUMO

Meprin ß is a zinc-dependent metalloprotease exhibiting a unique cleavage specificity with strong preference for acidic amino acids at the cleavage site. Proteomic studies revealed a diverse substrate pool of meprin ß including the interleukin-6 receptor (IL-6R) and the amyloid precursor protein (APP). Dysregulation of meprin ß is often associated with pathological conditions such as chronic inflammation, fibrosis, or Alzheimer's disease (AD). The extracellular regulation of meprin ß including interactors, sheddases, and activators has been intensively investigated while intracellular regulation has been barely addressed in the literature. This study aimed to analyze C-terminal phosphorylation of meprin ß with regard to cell surface expression and proteolytic activity. By immunoprecipitation of endogenous meprin ß from the colon cancer cell line Colo320 and subsequent LC-MS analysis, we identified several phosphorylation sites in its C-terminal region. Here, T694 in the C-terminus of meprin ß was the most preferred residue after phorbol 12-myristate 13-acetate (PMA) stimulation. We further demonstrated the role of protein kinase C (PKC) isoforms for meprin ß phosphorylation and identified the involvement of PKC-α and PKC-ß. As a result of phosphorylation, the meprin ß activity at the cell surface is reduced and, consequently, the extent of substrate cleavage is diminished. Our data indicate that this decrease of the surface activity is caused by the internalization and degradation of meprin ß.


Assuntos
Membrana Celular/metabolismo , Neoplasias do Colo/patologia , Espaço Extracelular/metabolismo , Metaloendopeptidases/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteólise , Neoplasias do Colo/metabolismo , Regulação da Expressão Gênica , Humanos , Metaloendopeptidases/genética , Fosforilação , Proteína Quinase C beta/genética , Proteína Quinase C-alfa/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA