Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 13: 175, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26695182

RESUMO

BACKGROUND: Dendritic cells (DC) are currently implemented as immunotherapeutic strategy for the treatment of tumor patients based on their central role in the immune system. Despite good results were obtained in vitro and in animal models, their clinical use has provided limited success suggesting the requirement to optimise the protocol for their production. METHODS: A cDNA array was performed on FastDC obtained from the differentiation of human peripheral blood monocytes stimulated with the clinical gold standard or with two alternative maturation cocktails combining interferon (IFN)γ and ligands for different toll like receptors (TLR). RESULTS: A stronger modulation of the DC transcriptome with respect to immature DC was found in alternatively stimulated DC when compared to DC stimulated with the clinical gold standard. A major class of molecules differentially expressed using distinct DC stimulation protocols were chemokines. Validation of their differential expression pattern at the mRNA and protein level confirmed the secretion of inflammatory chemokines by the alternative DC. Functional analyses of the chemotactic properties of DC "wash out" supernatants highlighted the ability of alternative, but not of gold standard DC to efficiently recruit immune cells with a prevalence of monocytes. Effector cells belonging to the innate as well as adaptive immunity were also attracted and the interaction with alternative DC resulted in enhanced secretion of IFNγ and induction of cytotoxic activity. Using leukocytes from cancer patients, it was demonstrated that the monocyte-attracting activity targeted cells with an inflammatory phenotype characterised by high levels of HLA-DR expression. CONCLUSIONS: Despite other classes of immune modulatory genes differently expressed in the alternative DC require to be investigated and characterised regarding their functional consequences, the reduced maturation state and chemoattractive properties of the gold standard versus alternative DC clearly promote the necessity to change the clinically used maturation cocktail of DC in order to improve the outcome of patients treated with DC-based vaccines.


Assuntos
Células Dendríticas/metabolismo , Diferenciação Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiotaxia , DNA Complementar , Células Dendríticas/citologia , Humanos , Neoplasias/sangue , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
2.
Nat Commun ; 14(1): 8142, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065964

RESUMO

To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.


Assuntos
Caenorhabditis elegans , Daucus carota , Humanos , Animais , Camundongos , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento , Longevidade , Poli-Inos/metabolismo , Mamíferos
3.
Front Aging ; 3: 905261, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821802

RESUMO

Age-associated diseases represent a growing burden for global health systems in our aging society. Consequently, we urgently need innovative strategies to counteract these pathological disturbances. Overwhelming generation of reactive oxygen species (ROS) is associated with age-related damage, leading to cellular dysfunction and, ultimately, diseases. However, low-dose ROS act as crucial signaling molecules and inducers of a vaccination-like response to boost antioxidant defense mechanisms, known as mitohormesis. Consequently, modulation of ROS homeostasis by nutrition, exercise, or pharmacological interventions is critical in aging. Numerous nutrients and approved drugs exhibit pleiotropic effects on ROS homeostasis. In the current review, we provide an overview of drugs affecting ROS generation and ROS detoxification and evaluate the potential of these effects to counteract the development and progression of age-related diseases. In case of inflammation-related dysfunctions, cardiovascular- and neurodegenerative diseases, it might be essential to strengthen antioxidant defense mechanisms in advance by low ROS level rises to boost the individual ROS defense mechanisms. In contrast, induction of overwhelming ROS production might be helpful to fight pathogens and kill cancer cells. While we outline the potential of ROS manipulation to counteract age-related dysfunction and diseases, we also raise the question about the proper intervention time and dosage.

4.
Nat Commun ; 13(1): 107, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013237

RESUMO

Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Classe II de Fosfatidilinositol 3-Quinases/genética , Diabetes Mellitus Tipo 2/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Longevidade/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Glicemia/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/efeitos dos fármacos , Metilação , Camundongos , Papaverina/farmacologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vorinostat/farmacologia
5.
Redox Biol ; 36: 101678, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32810740

RESUMO

Calcium (Ca2+) and reactive oxygen species (ROS) are versatile signaling molecules coordinating physiological and pathophysiological processes. While channels and pumps shuttle Ca2+ ions between extracellular space, cytosol and cellular compartments, short-lived and highly reactive ROS are constantly generated by various production sites within the cell. Ca2+ controls membrane potential, modulates mitochondrial adenosine triphosphate (ATP) production and affects proteins like calcineurin (CaN) or calmodulin (CaM), which, in turn, have a wide area of action. Overwhelming Ca2+ levels within mitochondria efficiently induce and trigger cell death. In contrast, ROS comprise a diverse group of relatively unstable molecules with an odd number of electrons that abstract electrons from other molecules to gain stability. Depending on the type and produced amount, ROS act either as signaling molecules by affecting target proteins or as harmful oxidative stressors by damaging cellular components. Due to their wide range of actions, it is little wonder that Ca2+ and ROS signaling pathways overlap and impact one another. Growing evidence suggests a crucial implication of this mutual interplay on the development and enhancement of age-related disorders, including cardiovascular and neurodegenerative diseases as well as cancer.


Assuntos
Sinalização do Cálcio , Cálcio , Cálcio/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Mol Neurobiol ; 55(7): 5809-5829, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29079999

RESUMO

The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid ß (Aß) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aß is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aß, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas de Membrana/metabolismo , Animais , Humanos , Modelos Biológicos , Transporte Proteico
7.
PLoS One ; 13(10): e0205589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304024

RESUMO

Spinal muscular atrophy (SMA) is a severe genetic disorder that manifests in progressive neuromuscular degeneration. SMA originates from loss-of-function mutations of the SMN1 (Survival of Motor Neuron 1) gene. Recent evidence has implicated peripheral deficits, especially in skeletal muscle, as key contributors to disease progression in SMA. In this study we generated myogenic cells from two SMA-affected human embryonic stem cell (hESC) lines with deletion of SMN1 bearing two copies of the SMN2 gene and recapitulating the molecular phenotype of Type 1 SMA. We characterized myoblasts and myotubes by comparing them to two unaffected, control hESC lines and demonstrate that SMA myoblasts and myotubes showed altered expression of various myogenic markers, which translated into an impaired in vitro myogenic maturation and development process. Additionally, we provide evidence that these SMN1 deficient cells display functional deficits in cholinergic calcium signaling response, glycolysis and oxidative phosphorylation. Our data describe a novel human myogenic SMA model that might be used for interrogating the effect of SMN depletion during skeletal muscle development, and as model to investigate biological mechanisms targeting myogenic differentiation, mitochondrial respiration and calcium signaling processes in SMA muscle cells.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular Espinal/metabolismo , Mioblastos/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Linhagem Celular , Expressão Gênica , Células-Tronco Embrionárias Humanas/patologia , Humanos , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Mioblastos/patologia , Receptores Colinérgicos/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
8.
Front Mol Neurosci ; 10: 118, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496400

RESUMO

The low-density lipoprotein receptor-related protein 1, LRP1, interacts with APP and affects its processing. This is assumed to be mostly caused by the impact of LRP1 on APP endocytosis. More recently, also an interaction of APP and LRP1 early in the secretory pathway was reported whereat retention of LRP1 in the ER leads to decreased APP cell surface levels and in turn, to reduced Aß secretion. Here, we extended the biochemical and immunocytochemical analyses by showing via live cell imaging analyses in primary neurons that LRP1 and APP are transported only partly in common (one third) but to a higher degree in distinct fast axonal transport vesicles. Interestingly, co-expression of LRP1 and APP caused a change of APP transport velocities, indicating that LRP1 recruits APP to a specific type of fast axonal transport vesicles. In contrast lowered levels of LRP1 facilitated APP transport. We further show that monomeric and dimeric APP exhibit similar transport characteristics and that both are affected by LRP1 in a similar way, by slowing down APP anterograde transport and increasing its endocytosis rate. In line with this, a knockout of LRP1 in CHO cells and in primary neurons caused an increase of monomeric and dimeric APP surface localization and in turn accelerated shedding by meprin ß and ADAM10. Notably, a choroid plexus specific LRP1 knockout caused a much higher secretion of sAPP dimers into the cerebrospinal fluid compared to sAPP monomers. Together, our data show that LRP1 functions as a sorting receptor for APP, regulating its cell surface localization and thereby its processing by ADAM10 and meprin ß, with the latter exhibiting a preference for APP in its dimeric state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA