Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Robot ; 39(3): 2170-2182, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37304231

RESUMO

Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%).

2.
J Neuroeng Rehabil ; 19(1): 26, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35219335

RESUMO

BACKGROUND: The purpose of augmentative exoskeletons is to help people exceed the limitations of their human bodies, but this cannot be realized unless people choose to use these exciting technologies. Although human walking efficiency has been highly optimized over generations, exoskeletons have been able to consistently improve this efficiency by 10-15%. However, despite these measurable improvements, exoskeletons today remain confined to the laboratory. To achieve widespread adoption, exoskeletons must not only exceed the efficiency of human walking, but also provide a perceivable benefit to their wearers. METHODS: In this study, we quantify the perceptual threshold of the metabolic efficiency benefit provided during exoskeleton-assisted locomotion. Ten participants wore bilateral ankle exoskeletons during continuous walking. The assistance provided by the exoskeletons was varied in 2 min intervals while participants provided feedback on their metabolic rate. These data were aggregated and used to estimate the perceptual threshold. RESULTS: Participants were able to detect a change in their metabolic rate of 22.7% (SD: 17.0%) with 75% accuracy. This indicates that in the short term and on average, wearers cannot yet reliably perceive the metabolic benefits of today's augmentative exoskeletons. CONCLUSIONS: If wearers cannot perceive the benefits provided by these technologies, it will negatively affect their impact, including long-term adoption and product viability. Future exoskeleton researchers and designers can use these methods and results to inform the development of exoskeletons that reach their potential.


Assuntos
Exoesqueleto Energizado , Tornozelo , Articulação do Tornozelo , Fenômenos Biomecânicos , Humanos , Caminhada
3.
Rep U S ; 2023: 6068-6074, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38130337

RESUMO

Emerging partial-assistance exoskeletons can enhance able-bodied performance and aid people with pathological gait or age-related immobility. However, every person walks differently, which makes it difficult to directly compute assistance torques from joint kinematics. Gait-state estimation-based controllers use phase (normalized stride time) and task variables (e.g., stride length and ground inclination) to parameterize the joint torques. Using kinematic models that depend on the gait-state, prior work has used an Extended Kalman filter (EKF) to estimate the gait-state online. However, this EKF suffered from kinematic errors since it used a subject-independent measurement model, and it is still unknown how personalization of this measurement model would reduce gait-state tracking error. This paper quantifies how much gait-state tracking improvement a personalized measurement model can have over a subject-independent measurement model when using an EKF-based gait-state estimator. Since the EKF performance depends on the measurement model covariance matrix, we tested on multiple different tuning parameters. Across reasonable values of tuning parameters that resulted in good performance, personalization improved estimation error on average by 8.5 ± 13.8% for phase (mean ± standard deviation), 27.2 ± 8.1% for stride length, and 10.5 ± 13.5% for ground inclination. These findings support the hypothesis that personalization of the measurement model significantly improves gait-state estimation performance in EKF based gait-state tracking (P≪0.05), which could ultimately enable reliable responses to faster human gait changes.

4.
IEEE Robot Autom Lett ; 7(3): 7463-7470, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35782346

RESUMO

Many exoskeletons today are primarily tested in controlled, steady-state laboratory conditions that are unrealistic representations of their real-world usage in which walking conditions (e.g., speed, slope, and stride length) change constantly. One potential solution is to detect these changing walking conditions online using Bayesian state estimation to deliver assistance that continuously adapts to the wearer's gait. This paper investigates such an approach in silico, aiming to understand 1) which of the various Bayesian filter assumptions best match the problem, and 2) which gait parameters can be feasibly estimated with different combinations of sensors available to different exoskeleton configurations (pelvis, thigh, shank, and/or foot). Our results suggest that the assumptions of the Extended Kalman Filter are well suited to accurately estimate phase, stride frequency, stride length, and ramp inclination with a wide variety of sparse sensor configurations.

5.
IEEE Trans Neural Syst Rehabil Eng ; 28(11): 2468-2477, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32986559

RESUMO

The natural impedance, or dynamic relationship between force and motion, of a human operator can determine the stability of exoskeletons that use interaction-torque feedback to amplify human strength. While human impedance is typically modelled as a linear system, our experiments on a single-joint exoskeleton testbed involving 10 human subjects show evidence of nonlinear behavior: a low-frequency asymptotic phase for the dynamic stiffness of the human that is different than the expected zero, and an unexpectedly consistent damping ratio as the stiffness and inertia vary. To explain these observations, this article considers a new frequency-domain model of the human joint dynamics featuring complex value stiffness comprising a real stiffness term and a hysteretic damping term. Using a statistical F-test we show that the hysteretic damping term is not only significant but is even more significant than the linear damping term. Further analysis reveals a linear trend linking hysteretic damping and the real part of the stiffness, which allows us to simplify the complex stiffness model down to a 1-parameter system. Then, we introduce and demonstrate a customizable fractional-order controller that exploits this hysteretic damping behavior to improve strength amplification bandwidth while maintaining stability, and explore a tuning approach which ensures that this stability property is robust to muscle co-contraction for each individual.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Impedância Elétrica , Humanos , Movimento (Física) , Contração Muscular , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA