Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Lipids Health Dis ; 21(1): 42, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538477

RESUMO

BACKGROUND: Monoacetyldiglycerides (MAcDG), are acetylated triglycerides (TG) and an emerging class of bioactive or functional lipid with promising nutritional, medical, and industrial applications. A major challenge exists when analyzing MAcDG from other subclasses of TG in biological matrices, limiting knowledge on their applications and metabolism. METHODS: Herein a multimodal analytical method for resolution, identification, and quantitation of MAcDG in biological samples was demonstrated based on thin layer chromatography-flame ionization detection complimentary with C30-reversed phase liquid chromatography-high resolution accurate mass tandem mass spectrometry. This method was then applied to determine the MAcDG molecular species composition and quantity in E. solidaginis larvae. The statistical method for analysis of TG subclass composition and molecular species composition of E. solidaginis larvae was one-way analysis of variance (ANOVA). RESULTS: The findings suggest that the proposed analytical method could simultaneously provide a fast, accurate, sensitive, high throughput analysis of MAcDG from other TG subclasses, including the fatty acids, isomers, and molecular species composition. CONCLUSION: This method would allow for MAcDG to be included during routine lipidomics analysis of biological samples and will have broad interests and applications in the scientific community in areas such as nutrition, climate change, medicine and biofuel innovations.


Assuntos
Lipidômica , Lipídeos , Cromatografia de Fase Reversa , Meios de Cultura , Lipídeos/química , Espectrometria de Massas em Tandem , Triglicerídeos
2.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634564

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFA), diglycerides (DG) and monoacetyldiglycerides (MAcDG) are gaining interest as functional lipids in pharmaceuticals and functional food formulations for managing and treating metabolic or inflammatory diseases. Herein, we investigated whether the antler and/or meat of two Cervids (moose and caribou) are novel sources of FAHFA, DG and MAcDG. We observed FAHFA present in moose and caribou composed mainly of polyunsaturated families, and that the esterification occurred frequently at the C5-hydroxy fatty acid moiety, most noticeably arachidonic acid 5-hydroxyeicosatrienoic acid (ARA-5-HERA). Moose antler, caribou and moose meat also contained significant levels of both 1,2-DG and 1,3-DG lipids. The 1,3-DG molecular species consisted mainly of 16:0/18:1, 18:0/16:0, and 18:0/18:1. On the other hand, major 1,2-DG species consisted of DG 18:0/18:0, 16:0/16:0 and 18:1/18:1 molecular species with higher levels in the antler compared to the meat. The molecular species composition of MAcDG was very simple and consisted of 14:2/18:2/2:0, 16:0/18:2/2:0, 16:0/18:1/2:0 and 18:0/18:1/2:0 with the first species 14:2/18:2/2:0 predominating in the tip of moose antlers. Increasing access to and knowledge of the presence of these functional lipids in foods will enhance their intake in the diet with potential implications in improving personal and population health.


Assuntos
Chifres de Veado/química , Ésteres/isolamento & purificação , Lipídeos/análise , Carne/análise , Animais , Cervos , Diglicerídeos , Indústria Farmacêutica , Ácidos Graxos , Alimento Funcional
3.
J Exp Biol ; 217(Pt 9): 1580-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790101

RESUMO

Most animals store energy as long-chain triacylglycerols (lcTAGs). Trace amounts of acetylated triacylglycerols (acTAGs) have been reported in animals, but are not accumulated, likely because they have lower energy density than lcTAGs. Here we report that acTAGs comprise 36% of the neutral lipid pool of overwintering prepupae of the goldenrod gall fly, Eurosta solidaginis, while only 17% of the neutral lipid pool is made up of typical lcTAGs. These high concentrations of acTAGs, present only during winter, appear to be synthesized by E. solidaginis and are not found in other freeze-tolerant insects, nor in the plant host. The mixture of acTAGs found in E. solidaginis has a significantly lower melting point than equivalent lcTAGs, and thus remains liquid at temperatures at which E. solidaginis is frozen in the field, and depresses the melting point of aqueous solutions in a manner unusual for neutral lipids. We note that accumulation of acTAGs coincides with preparation for overwintering and the seasonal acquisition of freeze tolerance. This is the first observation of accumulation of acTAGs by an animal, and the first evidence of dynamic interconversion between acTAGs and lcTAGs during development and in response to stress.


Assuntos
Adaptação Fisiológica , Água Corporal/metabolismo , Congelamento , Tephritidae/metabolismo , Triglicerídeos/metabolismo , Animais , Larva/química , Larva/metabolismo , Estações do Ano , Tephritidae/química
4.
Sci Rep ; 14(1): 1934, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253671

RESUMO

Pyroligneous acid (PA) is rich in bioactive compounds and known to have the potential to improve crop productivity and phytochemical content. However, the synergistic effect of PA and fertilizer has not been thoroughly studied. In this study, we assessed the biostimulatory effect of different rates of foliar PA application (i.e., 0, 0.25, 0.5, 1, and 2% PA/ddH2O (v/v)) combined with full rate (i.e., 0.63, 0.28, 1.03 g) and half rate of nitrogen-phosphorus-potassium (NPK) fertilizer on the yield and nutritional quality of greenhouse-grown tomato (Solanum lycopersicum 'Scotia'). Plants treated with 0.25% and 0.5% PA showed a significantly (p < 0.001) higher maximum quantum efficiency of photosystem II (Fv/Fm) and increased potential photosynthetic capacity (Fv/Fo), especially when combined with the full NPK rate. Leaf chlorophyll was significantly (p < 0.001) increased by approximately 0.60 and 0.49 folds in plants treated with 2% PA and full NPK rate compared to no spray and water, respectively. Total number of fruits was significantly (p < 0.001) increased by approximately 0.56 folds with the 2% PA irrespective of the NPK rate. The combined 2% PA and full NPK rate enhanced total fruit weight and the number of marketable fruits. Similarly, fruit protein, sugar and 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity were significantly (p < 0.001) enhanced by the combined 2% PA and full NPK rate. In contrast, the 0.5% PA combined with half NPK rate increased fruit carotenoid and phenolic contents while the 2% PA plus half NPK rate enhanced fruit flavonoid content. Generally, the synergistic effect of PA and NPK fertilizer increased fruit elemental composition. These showed that foliar application of 2% PA with full NPK rate is the best treatment combination that can be adopted as a novel strategy to increase the productivity and quality of tomato fruits. However, further study is required to investigate the molecular basis of PA biostimulatory effect on plants.


Assuntos
Solanum lycopersicum , Fertilizantes , Terpenos , Compostos Fitoquímicos/farmacologia
5.
Antioxidants (Basel) ; 13(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38397823

RESUMO

Apple pomace (AP) is a bio-waste product of apples that is co-produced as a by-product during apples' processing for making apple-based products, mainly apple juice, cider and vinegar. AP is a rich source of several bioactives that can be valorized as ingredients for developing novel functional foods, supplements and nutraceuticals. Within the present study, food-grade extracts from AP with different tannin contents were found to contain bioactive polar lipids (PLs), phenolics and carotenoids with strong anti-oxidant, antithrombotic and anti-inflammatory properties. The extract from the low-in-tannins AP showed stronger anti-inflammatory potency in human platelets against the potent thrombo-inflammatory mediator platelet-activating factor (PAF), while it also exhibited considerable anti-platelet effects against the standard platelet agonist, adenosine diphosphate (ADP). The infusion of 0.5-1.0 g of this bioactive AP extract as functional ingredients for whole-grain bread-making resulted in the production of novel bio-functional bread products with stronger anti-oxidant, antithrombotic and anti-inflammatory potency against both PAF and ADP in human platelets, compared to the standard non-infused control breads. Structural analysis by LCMS showed that the PL-bioactives from all these sources (AP and the bio-functional breads) are rich in bioactive unsaturated fatty acids (UFA), especially in the omega-9 oleic acid (OA; 18:1n9), the omega-3 alpha linolenic acid (ALA; 18:n3) and the omega-6 linoleic acid (LA; 18:2n6), which further supports their strong anti-inflammatory and antithrombotic properties. All food-grade extracted AP including that infused with AP-bioactives novel functional breads showed higher hydrophilic, lipophilic and total phenolic content, as well as total carotenoid content, and subsequently stronger antioxidant capacity. These results showed the potential of appropriately valorizing AP-extracts in developing novel bio-functional bakery products, as well as in other health-promoting applications. Nevertheless, more studies are needed to fully elucidate and/or validate the anti-inflammatory, antithrombotic and antioxidant potential of novel bio-functional products across the food and cosmetic sectors when infused with these AP bioactives.

6.
Metabolites ; 13(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367927

RESUMO

Aluminum (Al) toxicity is a major threat to global crop production in acidic soils, which can be mitigated by natural substances such as pyroligneous acid (PA). However, the effect of PA in regulating plant central carbon metabolism (CCM) under Al stress is unknown. In this study, we investigated the effects of varying PA concentrations (0, 0.25 and 1% PA/ddH2O (v/v)) on intermediate metabolites involved in CCM in tomato (Solanum lycopersicum L., 'Scotia') seedlings under varying Al concentrations (0, 1 and 4 mM AlCl3). A total of 48 differentially expressed metabolites of CCM were identified in the leaves of both control and PA-treated plants under Al stress. Calvin-Benson cycle (CBC) and pentose phosphate pathway (PPP) metabolites were considerably reduced under 4 mM Al stress, irrespective of the PA treatment. Conversely, the PA treatment markedly increased glycolysis and tricarboxylic acid cycle (TCA) metabolites compared to the control. Although glycolysis metabolites in the 0.25% PA-treated plants under Al stress were comparable to the control, the 1% PA-treated plants exhibited the highest accumulation of glycolysis metabolites. Furthermore, all PA treatments increased TCA metabolites under Al stress. Electron transport chain (ETC) metabolites were higher in PA-treated plants alone and under 1 mM, Al but were reduced under a higher Al treatment of 4 mM. Pearson correlation analysis revealed that CBC metabolites had a significantly strong positive (r = 0.99; p < 0.001) association with PPP metabolites. Additionally, glycolysis metabolites showed a significantly moderate positive association (r = 0.76; p < 0.05) with TCA metabolites, while ETC metabolites exhibited no association with any of the determined pathways. The coordinated association between CCM pathway metabolites suggests that PA can stimulate changes in plant metabolism to modulate energy production and biosynthesis of organic acids under Al stress conditions.

7.
J Neuroinflammation ; 9: 153, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747852

RESUMO

Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD). Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD.


Assuntos
Encéfalo/metabolismo , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Modelos Animais de Doenças , Enterobacteriaceae , Fosfolipídeos/sangue , Propionatos/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Transtornos Globais do Desenvolvimento Infantil/induzido quimicamente , Transtornos Globais do Desenvolvimento Infantil/patologia , Pré-Escolar , Enterobacteriaceae/metabolismo , Humanos , Infusões Intraventriculares , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Propionatos/administração & dosagem , Ratos , Ratos Long-Evans
8.
Plants (Basel) ; 11(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807602

RESUMO

Pyroligneous acid (PA) is a reddish-brown liquid obtained through the condensation of smoke formed during biochar production. PA contains bioactive compounds that can be utilized in agriculture to improve plant productivity and quality of edible parts. In this study, we investigated the biostimulatory effect of varying concentrations of PA (i.e., 0%, 0.25%, 0.5%, 1%, and 2% PA/ddH2O (v/v)) application on tomato (Solanum lycopersicum 'Scotia') plant growth and fruit quality under greenhouse conditions. Plants treated with 0.25% PA exhibited a significantly (p < 0.001) higher sub-stomatal CO2 concentration and a comparable leaf transpiration rate and stomatal conductance. The total number of fruits was significantly (p < 0.005) increased by approximately 65.6% and 34.4% following the application of 0.5% and 0.25% PA, respectively, compared to the control. The 0.5% PA enhanced the total weight of fruits by approximately 25.5%, while the 0.25% PA increased the elemental composition of the fruits. However, the highest PA concentration of 2% significantly (p > 0.05) reduced plant growth and yield, but significantly (p < 0.001) enhanced tomato fruit juice Brix, electrical conductivity, total dissolved solids, and titratable acidity. Additionally, total phenolic and flavonoid contents were significantly (p < 0.001) increased by the 2% PA. However, the highest carotenoid content was obtained with the 0.5% and 1% PA treatments. Additionally, PA treatment of the tomato plants resulted in a significantly (p < 0.001) high total ascorbate content, but reduced fruit peroxidase activity compared to the control. These indicate that PA can potentially be used as a biostimulant for a higher yield and nutritional quality of tomato.

9.
Front Plant Sci ; 13: 1085998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714730

RESUMO

Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.

10.
Plants (Basel) ; 11(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559657

RESUMO

Microgreens are immature young plants grown for their health benefits. A study was performed to evaluate the different mixed growing media on growth, chemical composition, and antioxidant activities of four microgreen species: namely, kale (Brassica oleracea L. var. acephala), Swiss chard (Beta vulgaris var. cicla), arugula (Eruca vesicaria ssp. sativa), and pak choi (Brassica rapa var. chinensis). The growing media were T1.1 (30% vermicast + 30% sawdust + 10% perlite + 30% PittMoss (PM)); T2.1 (30% vermicast + 20% sawdust + 20% perlite + 30% PM); PM was replaced with mushroom compost in the respective media to form T1.2 and T2.2. Positive control (PC) was Pro-mix BX™ potting medium alone. Root length was the highest in T1.1 while the shoot length, root volume, and yield were highest in T2.2. Chlorophyll and carotenoid contents of Swiss chard grown in T1.1 was the highest, followed by T2.2 and T1.1. Pak choi and kale had the highest sugar and protein contents in T2.2, respectively. Consistently, total phenolics and flavonoids of the microgreens were increased by 1.5-fold in T1.1 and T2.2 compared to PC. Antioxidant enzyme activities were increased in all the four microgreens grown in T1.1 and T2.2. Overall, T2.2 was the most effective growing media to increase microgreens plant growth, yield, and biochemical composition.

11.
J Adv Res ; 37: 75-89, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499051

RESUMO

Introduction: Honey bees (Apis mellifera) play key roles in food production performing complex behaviors, like self-grooming to remove parasites. However, the lipids of their central nervous system have not been examined, even though they likely play a crucial role in the performance of cognitive process to perform intricate behaviors. Lipidomics has greatly advanced our understanding of neuropathologies in mammals and could provide the same for honey bees. Objectives: The objectives of this study were to characterize the brain lipidome of adult honey bees and to assess the effect of clothianidin (a neurotoxic insecticide) on the brain lipid composition, gene expression, and performance of self-grooming behavior under controlled conditions (cage experiments). Methods: After seven days of exposure to oral sublethal doses of clothianidin, the bees were assessed for self-grooming behavior; their brains were dissected to analyze the lipidome using an untargeted lipidomics approach and to perform a high throughput RNAseq analysis. Results: Compared to all other organisms, healthy bee brain lipidomes contain unusually high levels of alkyl-ether linked (plasmanyl) phospholipids (51.42%) and low levels of plasmalogens (plasmenyl phospholipids; 3.46%). This could make it more susceptible to the effects of toxins in the environment. A positive correlation between CL 18:3/18:1/14:0/22:6, TG 6:0/11:2/18:1, LPE 18:0e and intense self-grooming was found. Sublethal doses of a neonicotinoid altered PC 20:3e/15:0, PC 16:0/18:3, PA 18:0/24:1, and TG 18:1/18:1/18/1 levels, and affected gene expression linked to GPI-anchor biosynthesis pathway and energy metabolism that may be partially responsible for the altered lipid composition. Conclusion: This study showed that lipidomics can reveal honey bee neuropathologies associated with reduced grooming behavior due to sublethal neonicotinoid exposure. The ease of use, unusual brain lipidome as well as characterized behaviors that are affected by the environment make honey bees a promising model organism for studying the neurolipidome and associations with neurobehavioral disorders.


Assuntos
Encéfalo , Lipidômica , Animais , Abelhas , Asseio Animal/fisiologia , Mamíferos , Neonicotinoides/toxicidade , Fosfolipídeos
12.
Sci Rep ; 12(1): 14355, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999262

RESUMO

Communication between gut microbiota and the brain is an enigma. Alterations in the gut microbial community affects enteric metabolite levels, such as short chain fatty acids (SCFAs). SCFAs have been proposed as a possible mechanism through which the gut microbiome modulate brain health and function. This study analyzed for the first time the effects of SCFAs at levels reported in human systemic circulation on SH-SY5Y human neuronal cell energy metabolism, viability, survival, and the brain lipidome. Cell and rat brain lipidomics was done using high resolution mass spectrometry (HRMS). Neuronal cells viability, survival and energy metabolism were analyzed via flow cytometer, immunofluorescence, and SeahorseXF platform. Lipidomics analysis demonstrated that SCFAs significantly remodeled the brain lipidome in vivo and in vitro. The most notable remodulation was observed in the metabolism of phosphatidylethanolamine plasmalogens, and mitochondrial lipids carnitine and cardiolipin. Increased mitochondrial mass, fragmentation, and hyperfusion occurred concomitant with the altered mitochondrial lipid metabolism resulting in decreased neuronal cell respiration, adenosine triphosphate (ATP) production, and increased cell death. This suggests SCFAs at levels observed in human systemic circulation can adversely alter the brain lipidome and neuronal cell function potentially negatively impacting brain health outcomes.


Assuntos
Microbioma Gastrointestinal , Neuroblastoma , Animais , Apoptose , Ácidos Graxos Voláteis/metabolismo , Humanos , Metabolismo dos Lipídeos , Ratos
13.
Food Sci Nutr ; 9(1): 282-289, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33473292

RESUMO

BACKGROUND: The chemical composition of Handal (Citrullus colocynthis L.) seed oil cultivated in Jordan deserts was characterized, and its bioactivity was evaluated. METHODS: The oil was extracted from the grinded seeds in 500 ml Soxhlet extractor for 24 hr using n-hexane, and the recovered fatty acids were methylated with methanolic-HCL. The fatty acid methyl esters (FAMEs) composition was analyzed using GC-MS and GC-FID. The anticancer activity associated with the oil was assessed against colon cancer cell lines (Caco-2 and HCT-116) and compared to its cytotoxicity on the human skin fibroblast. Multivariate analysis was used to determine relationship of the fatty acid composition with that of the anticancer activity. RESULTS: The results demonstrated that fatty acid composition of Citrullus colocynthis seed oil chiefly contains Linoleic acid, denoted as C18:2n6 (75%), followed by Palmitic acid C16:0 (8%), Stearic acid C18:0 (5%), and Oleic acid C18:1n9 (9%). It is demonstrated as an excellent source of essential fatty acids omega-6 (e.g., Linoleic acid), whereas omega-3 (e.g., α-Linolenic acid) and hydroxy polyunsaturated fatty acids are found at small level. Interestingly, the oil exhibited reasonable anticancer effects against colorectal cancer cell lines with IC50 values varying between 4 and 7 mg/ml. The correlation test revealed a relationship between the fatty acid composition and the effectiveness on treatments. CONCLUSIONS: Handal plant from Jordan appears to have very high level of Linoleic acid compared to other oils measured in different geographic locations and that there appears to be some anticancer activities associated with the fatty acid content of Handal seed oil.

14.
Meat Sci ; 171: 108271, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32827804

RESUMO

Ruminant meats contain ester and ether-linked phosphatidylcholines-(PC) and phosphatidylethanolamines-(PE) enriched with ω3 and ω6 polyunsaturated fatty acids-(PUFA) essential for human health and nutrition. Oxidative degradation of these lipids during grilling compromises meat quality and safety. The effect of marinades containing unfiltered session ales, herbs and spices on these lipids in grilled beef and moose meat was investigated in current study. Marination preserved (P < 0.05) ester and ether linked PUFA-enriched PC and PE in moose, and PUFA-enriched ether PC and diacyl PE in beef against oxidative degradation. Furthermore, India ale-based marinated meats retained higher (P < 0.05) PUFA-enriched lysophosphatidylcholines-(LPC) and lysophosphatidylethanolamines-(LPE) compared to Wheat ale-based marinated meats. The preserved PUFA-enriched lipids were positively correlated with phenolics, oxygenated terpenes, and antioxidants present in the marinades, and negatively correlated to oxidation status. These findings appear to suggest that unfiltered beer-based marination could be a useful precooking technique to increase dietary access and consumption of essential fatty acids while preserving grilled meat nutritional quality and safety.


Assuntos
Culinária/métodos , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Carne Vermelha/análise , Animais , Cerveja , Bovinos , Cervos , Ácidos Graxos Insaturados/análise
15.
PLoS One ; 16(7): e0254188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237112

RESUMO

A combination of vermicast and sawdust mixed medium is commonly used in horticulture, but the added benefit of microbial inoculation and mechanism of nutrient availability are unknown. This study was done to determine nutrient mineralization and nutrient release patterns of different combinations or a mix of vermicast-sawdust growing media amended with or without Trichoderma viride (105 spores/g). The mixed-media treatments were (1) 80% vermicast+20% sawdust; (2) 60% vermicast+40% sawdust; (3) 40% vermicast+60% sawdust; (4) 20% vermicast+80% sawdust; and (5) sawdust alone (control). Total dissolved solids, electric conductivity and salinity increased with each sampling time following submergence in deionized. Nutrients released from media without T. viride were significantly higher than the corresponding media with added T. viride. Overall, the starting total nitrogen of the different media did not change during the incubation period, but nitrate-nitrogen was reduced to a negligible amount by the end of day 30 of incubation. A repeated measures analysis showed a significant effect of Time*T. viride*Treatment on total dissolved solids. Redundancy analysis demonstrated a positive and strong association between media composed of ≥40% vermicast and ≤60% sawdust with or without T. viride and mineral nutrients released, electrical conductivity, total dissolved solids and salinity. These findings suggest that fast-growing plants may benefit from 40% to 60% vermicast added to 40% to 60% sawdust without T. viride while slow-growing plants can benefit from the same mixed medium combined with the addition of T. viride. Further investigation is underway to assess microbial dynamics in the mixed media and their influence on plant growth.


Assuntos
Nutrientes , Trichoderma , Meios de Cultura , Nitrogênio
16.
J Neurochem ; 113(2): 515-29, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20405543

RESUMO

Recent studies have demonstrated intraventricular infusions of propionic acid (PPA) a dietary and enteric short-chain fatty acid can produce brain and behavioral changes similar to those observed in autism spectrum disorder (ASD). The effects of PPA were further evaluated to determine if there are any alterations in brain lipids associated with the ASD-like behavioral changes observed following intermittent intraventricular infusions of PPA, the related enteric metabolite butyric acid (BUT) or phosphate-buffered saline vehicle. Both PPA and BUT produced significant increases (p < 0.001) in locomotor activity (total distance travelled and stereotypy). PPA and to a lesser extent BUT infusions decreased the levels of total monounsaturates, total omega6 fatty acids, total phosphatidylethanolamine plasmalogens, the ratio of omega6 : omega3 and elevated the levels of total saturates in separated phospholipid species. In addition, total acylcarnitines, total longchain (C12-C24) acylcarnitines, total short-chain (C2 to C9) acylcarnitines, and the ratio of bound to free carnitine were increased following infusions with PPA and BUT. These results provide evidence of a relationship between changes in brain lipid profiles and the occurrence of ASD-like behaviors using the autism rodent model. We propose that altered brain fatty acid metabolism may contribute to ASD.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Carnitina/análogos & derivados , Fosfolipídeos/metabolismo , Propionatos/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Carnitina/metabolismo , Criança , Transtornos Globais do Desenvolvimento Infantil , Cromatografia em Camada Fina/métodos , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Injeções Intraventriculares/métodos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Long-Evans , Espectrometria de Massas por Ionização por Electrospray/métodos , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia
17.
Data Brief ; 33: 106324, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33015257

RESUMO

This article presents the associated data set in the research article entitled "Assessing beer-based marinades effects on ether and ester linked phosphatidylcholines and phosphatidylethanolamines in grilled beef and moose meat" published in Meat Science [1], demonstrating the use of unfiltered beer-based marinades in improving the nutritional quality of grilled ruminant meat by suppressing the degradation of health-promoting ester and ether-linked PC and PE the most predominant glycerophospholipids (GPL) in meat. High throughput lipidomics analysis was conducted using high-resolution accurate mass tandem mass spectrometry (UHPLC-HRAMS/MS-MS) to profile the meat lipids following marination and grilling. The marinades were composed of a combination of unfiltered beers, fruits, herbs and spices. The data presented show the retention levels of ether as well as ester linked PC and PE molecular species; Pearson's correlations for the associations between antioxidants, phenolics, volatile oxygenated terpenes, oxidation status and preserved phospholipid species in the marinated grilled meats. There are many studies demonstrating cooking effects on fatty acid composition of meat phospholipids in the literature. However, information on how marination and grilling affects intact ether and ester linked PC and PE composition in grilled ruminant meats is limited. As such, this dataset provides useful information on the preservation of ruminant meat ester and ether-linked glycerophospholipid composition following marination with unfiltered beer-based marinades and meat preparation via grilling. Specifically, this data demonstrate the preservation of ether and ester linked PC and PE enriched with essential ω3 and ω6 fatty acids from degradation during grilling. For additional insights see [1] DOI: 10.1016/j.meatsci.2020.108271.

18.
Food Chem ; 332: 127384, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615384

RESUMO

Dairy polar lipids (PL) seem to exhibit antiplatelet effects. However, it is not known what molecular species may be responsible. In this study, we confirmed using C30 reversed-phase (C30RP) ultra-high-performance liquid chromatography (UHPLC) coupled to high resolution accurate mass tandem mass spectrometry (HRAM-MS/MS) that fermentation of yoghurts from ovine milk using specific starter cultures altered the PL composition. These lipid alterations occurred concomitant with increased antithrombotic properties of the yoghurts PL fractions against platelet-activating factor (PAF) and thrombin-induced platelet aggregation. Specifically, elevation in phosphatidylethanolamine (PE), sphingomyelin (SM), phosphatidylcholine (PC) and their molecular species were observed following yoghurt fermentation. Furthermore, PC(18:0/18:1), PE(18:1/18:2), SM(d18:0/22:0) and several other molecular species were significantly inversely correlated with the inhibition of PAF and thrombin. These molecular species were abundant in the most bioactive yoghurts fermented by S. thermophilus and L. acidophilus, which suggest that fermentation by these microorganisms increases the antithrombotic properties of ovine milk PL.


Assuntos
Lipídeos/análise , Leite/metabolismo , Inibidores da Agregação Plaquetária/análise , Iogurte/análise , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cromatografia Líquida de Alta Pressão , Fermentação , Lipídeos/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Ovinos , Esfingomielinas/metabolismo , Espectrometria de Massas em Tandem , Trombina/farmacologia
19.
MethodsX ; 6: 2686-2697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799138

RESUMO

Cooking techniques such as grilling confer several benefits to meat during food preparation including improved palatability, digestibility, preservation, and safety, as well as enhancing the sensory characteristics and net nutritional gain. However, grilling can lead to the formation of harmful compounds such heterocyclic amines (HCAs). HCAs are potent carcinogenic and mutagenic nitrogen containing compounds produced during certain cooking conditions of protein rich foods. Dietary intake of HCAs is associated with increased risk factors for cancers in humans. As such, there is overwhelming interest in identifying improved methods for rapid and accurate determination of heterocyclic amines in food matrices that is sensitive and avoids exhaustive sample preparation steps. Herein, we describe an approach that involves first extracting HCAs by pressurized accelerated solvent extractor using methanol as solvent, followed by addition of internal standard and quantification of HCAs by ultra-high performance liquid chromatography-high resolution accurate mass spectrometric detection (UHPLC-HRAMS). This method is fast, accurate, reproducible and does not require exhaustive sample pre-treatments prior to UHPLC-HRAMS analysis compared to existing/traditional methods for HCA analysis. •The method is automated, fast and uses tunable pressurized liquid extractor to selectively extract HCAs•Method does not require exhaustive cleanup and preconcentration steps prior to UHPLC/HRAMS analysis of HCAs•Validation showed method to be accurate, precise, and useful for routine multi-sample HCA analyses.

20.
Data Brief ; 27: 104801, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31799349

RESUMO

Objective of this data isn brief article is to present the associated data set regarding the revised article entitled "Unfiltered beer based marinades reduced exposure to carcinogens and suppressed conjugated fatty acid oxidation in grilled meats" recommended for publication in Food Control [1]. Grill food safety and quality is a major concern globally. Here in we present data demonstrating the use of novel unfiltered beer based marinades in improving the nutritional quality and safety of grilled ruminant meat. Grilling can lead to the formation of harmful compounds and modify the functional lipids in meats via oxidation, thereby affecting the nutritional quality and safety of the finished product. Lipid oxidation is a deteriorative process involving the degradation of lipid double bonds and the formation of new compounds. Some of these compounds can result in reduced meat quality and off-flavours affecting the sensory, nutritional quality and safety of grilled meat. Unfiltered beers, herbs and spices are known to be excellent sources of antioxidants and polyphenols which can suppress oxidation of functional lipids in grilled meat. Novel unfiltered beer based marinades were developed and used to marinate ruminant meat (beef and moose) prior to grilling. The effect of marination on the fatty acid profile, including saturated, mono- and polyunsaturated fatty acids, of grilled meat was analyzed by gas chromatography/mass spectrometry (GC/MS). In this data in brief article, we include 3 tables containing the fatty acid composition of unmarinated and marinated grilled ruminant meats (beef and moose), a figure showing the percent distribution of grilled meat fatty acid classes, and 2 figures on Pearson's correlation for the associations between phenolic contents, oxidation status and total conjugated linolenic acid (CLA) content. To the best of our knowledge, there is a paucity of information in the literature on the fatty acid composition of wild Cervid meat following preparation by grilling. Grill food safety and nutritional quality is of significant interest to researchers and consumers in the scientific and general food science communities. This article provides data on the fatty composition of grilled moose meat and could be of value to fill the paucity of information currently available in the scientific community on the observed fatty acid composition of grill moose meat. Furthermore, the article presents data on the effects of beer based marinade formulations on the quality of the fatty acid composition of grilled ruminant meats (beef and moose). The growing awareness of the benefits of dietary fatty acids in enhancing personal and population health by reducing the risk factors for cardiovascular diseases and neurodegenerative disorders means that consumers demand meat products with improved fatty acid composition [2,3]. Cervids such as moose (Alces alces) are popular as superior sources of low-fat lean meat with balanced omega 6:3 essential fatty acids compared to traditional farm raised or domesticated meat animals due to the forage they consume as a normal part of their diet [2,4,5]. Furthermore, session ale beers is currently a global phenomenon derived from unique combinations of grains, hops, fruits and herbs to produce low alcohol by volume beers with unique flavors popular among consumers. Two unfiltered session beers were used as base ingredients to produce two novel marinades infused with unique combination of antioxidant rich herbs and spices as a suitable system for the production of grilled foods with enhanced nutritional and sensory characteristics. Whilst there are a limited number of studies in the literature that have used unfiltered beers to evaluate the effects of these beers on suppression of lipid oxidation in grilled meat, none to the best of our knowledge has evaluated the effect of antioxidant rich unfiltered beer based marinades on fatty acid composition of grilled meat systems [6] [7]. As such, this data set presents the concept of using craft beers (specifically session ales) infused with unique combination of herbs and spices to produce unfiltered beer base marinades with enhanced ability to improve grill food sensory attributes and quality, and demonstrates that novel formulations of popular unfiltered India session ale and wheat ale based marinades infused with unique combinations of herbs and spices could be used to marinate beef and moose meats prior to grilling to preserve meat lipids including anticarcinogenic linoleic acid and essential ω3 and ω6 fatty acids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA