Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Environ Microbiol ; 26(1): e16553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062568

RESUMO

Interspecific interactions in biofilms have been shown to cause the emergence of community-level properties. To understand the impact of interspecific competition on evolution, we deep-sequenced the dispersal population of mono- and co-culture biofilms of two antagonistic marine bacteria (Phaeobacter inhibens 2.10 and Pseudoalteromononas tunicata D2). Enhanced phenotypic and genomic diversification was observed in the P. tunicata D2 populations under both mono- and co-culture biofilms in comparison to P. inhibens 2.10. The genetic variation was exclusively due to single nucleotide variants and small deletions, and showed high variability between replicates, indicating their random emergence. Interspecific competition exerted an apparent strong positive selection on a subset of P. inhibens 2.10 genes (e.g., luxR, cobC, argH, and sinR) that could facilitate competition, while the P. tunicata D2 population was genetically constrained under competition conditions. In the absence of interspecific competition, the P. tunicata D2 replicate populations displayed high levels of mutations affecting the same genes involved in cell motility and biofilm formation. Our results show that interspecific biofilm competition has a complex impact on genomic diversification, which likely depends on the nature of the competing strains and their ability to generate genetic variants due to their genomic constraints.


Assuntos
Pseudoalteromonas , Rhodobacteraceae , Biofilmes , Rhodobacteraceae/genética , Pseudoalteromonas/genética , Genômica , Ecologia , Evolução Molecular
2.
Environ Microbiol ; 26(1): e16564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151764

RESUMO

Different marine seaweed species have been shown to harbour specific bacterial communities, however, the extent to which vertical symbiont transmission from parents to offspring contributes to host-specificity is unclear. Here we use fluorescence and electron microscopy as well as 16S rRNA gene-based community analysis to investigate symbiont transmission in members of the three major seaweed groups (green Chlorophyta, red Rhodophyta and brown Phaeophyceae). We found seaweeds employ diverse strategies to transfer symbionts to their progeny. For instance, the green Ulva australis does not appear to have the capacity for vertical transmission. In contrast, the brown Phyllospora comosa adopts a non-selective vertical transmission. The red Delisea pulchra demonstrates weak selectivity in symbiont transmission, while the brown Hormosira banksii exhibits a strongly selective symbiont transfer. Mucilage on the gametes appears to facilitate vertical transmission and transferred bacteria have predicted properties that could support early development of the seaweeds. Previous meta-analysis has indicated that vertical transmission is rare in aquatic compared to terrestrial environments, however, our results contribute to the growing evidence that this might not be the case and that instead vertical transmission with various degrees of symbiont selection occurs in the ecologically important group of seaweeds.


Assuntos
Clorófitas , Phaeophyceae , Rodófitas , Alga Marinha , RNA Ribossômico 16S/genética , Alga Marinha/microbiologia , Rodófitas/microbiologia , Clorófitas/genética , Bactérias/genética
3.
Mol Ecol ; 33(5): e17267, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230446

RESUMO

The range-expansion of tropical herbivores due to ocean warming can profoundly alter temperate reef communities by overgrazing the seaweed forests that underpin them. Such ecological interactions may be mediated by changes to seaweed-associated microbiota in response to warming, but empirical evidence demonstrating this is rare. We experimentally simulated ocean warming and marine heatwaves (MHWs) to quantify effects on two dominant temperate seaweed species and their microbiota, as well as grazing by a tropical herbivore. The kelp Ecklonia radiata's microbiota in sustained warming and MHW treatments was enriched with microorganisms associated with seaweed disease and tissue degradation. In contrast, the fucoid Sargassum linearifolium's microbiota was unaffected by temperature. Consumption by the tropical sea-urchin Tripneustes gratilla was greater on Ecklonia where the microbiota had been altered by higher temperatures, while Sargassum's consumption was unaffected. Elemental traits (carbon, nitrogen), chemical defences (phenolics) and tissue bleaching of both seaweeds were generally unaffected by temperature. Effects of warming and MHWs on seaweed holobionts (host plus its microbiota) are likely species-specific. The effect of increased temperature on Ecklonia's microbiota and subsequent increased consumption suggest that changes to kelp microbiota may underpin kelp-herbivore interactions, providing novel insights into potential mechanisms driving change in species' interactions in warming oceans.


Assuntos
Kelp , Microbiota , Alga Marinha , Kelp/fisiologia , Ecossistema , Mudança Climática , Oceanos e Mares
4.
Glob Chang Biol ; 30(8): e17417, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39105285

RESUMO

Marine heatwaves (MHWs) are increasing in frequency, duration and intensity, disrupting global marine ecosystems. While most reported impacts have been in tropical areas, New Zealand experienced its strongest and longest MHW in 2022, profoundly affecting marine sponges. Sponges are vital to rocky benthic marine communities, with their abundance influencing ecosystem functioning. This study examines the impact of this MHW on the photosynthetic sponge Cymbastella lamellata in Fiordland, New Zealand. We describe the extent, physiological responses, mortality, microbial community changes and ecological impact of this MHW on C. lamellata. The Fiordland MHW reached a maximum temperature of 4.4°C above average, lasting for 259 days. Bleaching occurred in >90% of the C. lamellata Fiordland population. The population size exceeded 66 million from 5 to 25 m, making this the largest bleaching event of its kind ever recorded. We identified the photosynthetic symbiont as a diatom, and bleached sponges had reduced photosynthetic efficiency. Post-MHW surveys in 2023 found that over 50% of sponges at sampling sites had died but that the remaining sponges had mostly recovered from earlier bleaching. Using a simulated MHW experiment, we found that temperature stress was a driver of necrosis rather than bleaching, despite necrosis only rarely being observed in the field (<2% of sponges). This suggests that bleaching may not be the cause of the mortality directly. We also identified a microbial community shift in surviving sponges, which we propose represents a microbial-mediated adaptive response to MHWs. We also found that C. lamellata are key contributors of dissolved organic carbon to the water column, with their loss likely impacting ecosystem function. We demonstrate the potential for MHWs to disrupt key marine phyla in temperate regions, highlighting how susceptible temperate sponges globally might be to MHWs.


Assuntos
Microbiota , Poríferos , Poríferos/microbiologia , Poríferos/fisiologia , Animais , Nova Zelândia , Fotossíntese , Calor Extremo/efeitos adversos , Ecossistema , Simbiose , Diatomáceas/fisiologia , Diatomáceas/crescimento & desenvolvimento
5.
J Phycol ; 60(4): 785-796, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047050

RESUMO

Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.


Assuntos
Microbiota , Alga Marinha , Simbiose
6.
Eye Contact Lens ; 50(11): 467-474, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39252208

RESUMO

OBJECTIVES: As face mask wear can result in the redirection of nasal and oral exhalation toward the ocular region, this study investigated the impact of face mask wear on the conjunctiva, eyelid margin, and contact lens (CL) surface microbiome. METHODS: In this prospective, cross-over study, experienced CL wearers (N=20) were randomized to wear a face mask for 6 hr/day (minimum) for a week or no mask for a week. The conjunctiva, eyelid, and CLs were then sampled. After a 1-week washout period, participants were crossed over into the alternate treatment for 1 week and sampling was repeated. Sampling was bilateral and randomly assigned to be processed for culturing or 16S ribosomal(r) RNA gene sequencing. RESULTS: Culturing showed no effect of mask wear on the average number of bacterial colonies isolated on the conjunctiva, eyelid, or CL, but there was increased isolation of Staphylococcus capitis on CL samples with mask wear ( P =0.040). Culture-independent sequencing found differences in the taxonomic complexity and bacterial composition between the three sites ( P <0.001), but there was no effect of bacterial diversity within and between sites. Mask wear did not impact dry eye or CL discomfort, but increased ocular surface staining was reported ( P =0.035). CONCLUSIONS: Mask wear did not substantially alter the microbiome of the conjunctiva, eyelid margin, or CL surfaces in uncompromised healthy eyes.


Assuntos
Túnica Conjuntiva , Estudos Cross-Over , Pálpebras , Máscaras , Microbiota , Humanos , Túnica Conjuntiva/microbiologia , Estudos Prospectivos , Masculino , Feminino , Adulto , Pálpebras/microbiologia , Máscaras/microbiologia , Adulto Jovem , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Lentes de Contato Hidrofílicas/microbiologia
7.
Proc Biol Sci ; 290(2000): 20222539, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37282536

RESUMO

Marine heatwaves are increasingly subjecting organisms to unprecedented stressful conditions, but the biological consequences of these events are still poorly understood. Here we experimentally tested the presence of carryover effects of heatwave conditions on the larval microbiome, settlers growth rate and metamorphosis duration of the temperate sponge Crella incrustans. The microbial community of adult sponges changed significantly after ten days at 21°C. There was a relative decrease in symbiotic bacteria, and an increase in stress-associated bacteria. Sponge larvae derived from control sponges were mainly characterised by a few bacterial taxa also abundant in adults, confirming the occurrence of vertical transmission. The microbial community of sponge larvae derived from heatwave-exposed sponges showed significant increase in the endosymbiotic bacteria Rubritalea marina. Settlers derived from heatwave-exposed sponges had a greater growth rate under prolonged heatwave conditions (20 days at 21°C) compared to settlers derived from control sponges exposed to the same conditions. Moreover, settler metamorphosis was significantly delayed at 21°C. These results show, for the first time, the occurrence of heatwave-induced carryover effects across life-stages in sponges and highlight the potential role of selective vertical transmission of microbes in sponge resilience to extreme thermal events.


Assuntos
Microbiota , Poríferos , Animais , Bactérias , Simbiose , Filogenia
8.
Bioinformatics ; 38(15): 3684-3688, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35713513

RESUMO

MOTIVATION: Metagenome-assembled genomes (MAGs) have substantially extended our understanding of microbial functionality. However, 16S rRNA genes, which are commonly used in phylogenetic analysis and environmental surveys, are often missing from MAGs. Here, we developed MarkerMAG, a pipeline that links 16S rRNA genes to MAGs using paired-end sequencing reads. RESULTS: Assessment of MarkerMAG on three benchmarking metagenomic datasets with various degrees of complexity shows substantial increases in the number of MAGs with 16S rRNA genes and a 100% assignment accuracy. MarkerMAG also estimates the copy number of 16S rRNA genes in MAGs with high accuracy. Assessments on three real metagenomic datasets demonstrate 1.1- to 14.2-fold increases in the number of MAGs with 16S rRNA genes. We also show that MarkerMAG-improved MAGs increase the accuracy of functional prediction from 16S rRNA gene amplicon data. MarkerMAG is helpful in connecting information in MAG databases with those in 16S rRNA databases and surveys and hence contributes to our increasing understanding of microbial diversity, function and phylogeny. AVAILABILITY AND IMPLEMENTATION: MarkerMAG is implemented in Python3 and freely available at https://github.com/songweizhi/MarkerMAG. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenoma , Metagenômica , RNA Ribossômico 16S/genética , Filogenia , Bases de Dados Factuais
9.
Mol Ecol ; 32(23): 6278-6293, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34995388

RESUMO

Most multicellular eukaryotes host complex communities of microorganisms, but the factors that govern their assembly are poorly understood. The settlement of specific microorganisms may have a lasting impact on community composition, a phenomenon known as the priority effect. Priority effects of individual bacterial strains on a host's microbiome are, however, rarely studied and their impact on microbiome functionality remains unknown. We experimentally tested the effect of two bacterial strains (Pseudoalteromonas tunicata D2 and Pseudovibrio sp. D323) on the assembly and succession of the microbial communities associated with the green macroalga Ulva australis. Using 16S rRNA gene sequencing and qPCR, we found that both strains exert a priority effect, with strain D2 causing initially strong but temporary taxonomic changes and strain D323 causing weaker but consistent changes. Consistent changes were predominately facilitatory and included taxa that may benefit the algal host. Metagenome analyses revealed that the strains elicited both shared (e.g., depletion of type III secretion system genes) and unique (e.g., enrichment of antibiotic resistance genes) effects on the predicted microbiome functionality. These findings indicate strong idiosyncratic effects of colonizing bacteria on the structure and function of host-associated microbial communities. Understanding the idiosyncrasies in priority effects is key for the development of novel probiotics to improve host condition.


Assuntos
Microbiota , Rhodobacteraceae , Ulva , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma , Ulva/genética , Rhodobacteraceae/genética
10.
Exp Eye Res ; 235: 109615, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586456

RESUMO

The most common and chronic ocular problem of aging is dry eye disease (DED) and the associated condition of meibomian gland dysfunction (MGD). The resident ocular surface bacteria may have a role in maintaining homeostasis and perturbation may contribute to disease development. The aim of this study was to compare the microbiomes of the conjunctiva and eyelid margin in humans with mild and moderate DED and controls using 16 S rRNA gene sequencing. The conjunctiva and lid margin of three cohorts (N = 60; MGD, MGD with lacrimal dysfunction [MGD + LD] and controls) were swabbed bilaterally three times over three months. Microbial communities were analysed by extracting DNA and sequencing the V3-V4 region of the 16 S ribosomal RNA gene using the Illumina MiSeq platform. Sequences were quality filtered, clustered into amplicon sequence variants (ASVs) using UNOISE algorithm and taxonomically classified using a Bayesian Last Common Ancestor (BCLA) algorithm against the GTDB 2207 database. The overall microbial communities of the MGD, MGD + LD and control groups were significantly different from each other (P = 0.001). The MGD and MGD + LD dry eye groups showed greater variability between individuals compared to the control (PERMDISP, P < 0.01). There was decreased richness and diversity in females compared to males for the conjunctiva (P < 0.04) and eyelid margin (P < 0.018). The conjunctiva in the MGD + LD group had more abundant Pseudomonas azotoformans, P. oleovorans and Caballeronia zhejiangensis compared to MGD and control (P < 0.05), while the MGD group had more abundant Corynebacterium macginleyi and C. kroppenstedtii compared to control (P < 0.05). The lid margin in MGD was more abundant in C. macginleyi, C. accolens, and C. simulans compared to the MGD + LD and control (P < 0.05). There were differences in the overall microbial community composition and certain taxa, including increased levels of lipophilic bacteria, on the conjunctiva and eyelid margin in mild to moderate DED/MGD compared to controls. DED/MGD was also associated with a reduced bacterial richness and diversity in females.


Assuntos
Síndromes do Olho Seco , Doenças Palpebrais , Disfunção da Glândula Tarsal , Microbiota , Humanos , Masculino , Feminino , Glândulas Tarsais , Teorema de Bayes , Bactérias/genética , Lágrimas
11.
Microb Ecol ; 86(1): 658-669, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35689685

RESUMO

Creating biodiverse urban habitat has been proposed, with growing empirical support, as an intervention for increasing human microbial diversity and reducing associated diseases. However, ecological understanding of urban biodiversity interventions on human skin microbiota remains limited. Here, we experimentally test the hypotheses that disturbed skin microbiota recover better in outdoor schoolyard environments and that greater biodiversity provides a greater response. Repeating the experiment three times, we disturbed skin microbiota of fifty-seven healthy 10-to-11-year-old students with a skin swab (i.e., cleaning), then exposed them to one school environment-either a 'classroom' (n = 20), 'sports field' (n = 14), or biodiverse 'forest' (n = 23)-for 45 min. Another skin swab followed the exposure to compare 'before' and 'after' microbial communities. After 45 min, the disturbance immediately followed by outdoor exposure, especially the 'forest', had an enriching and diversifying effect on skin microbiota, while 'classroom' exposure homogenised inter-personal variability. Each effect compounded over consecutive days indicating longer-term exposure outcomes. The experimental disturbance also reduced the core skin microbiota, and only outdoor environments were able to replenish lost species richness to core membership (n species > 50% prevalent). Overall, we find that environmental setting, especially including biodiversity, is important in human microbiota recovery periods and that the outdoors provide resilience to skin communities. This work also has implications for the inclusion of short periods of outside or forest exposure in school scheduling. Future investigations of the health impacts of permanent urban biodiversity interventions are needed.


Assuntos
Microbiota , Humanos , Criança , Biodiversidade , Florestas , Pele
12.
Bioessays ; 43(10): e2100068, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34463364

RESUMO

Coral reefs have been challenged by the current rate and severity of environmental change that might outpace their ability to adapt and survive. Current research focuses on understanding how microbial communities and epigenetic changes separately affect phenotypes and gene expression of corals. Here, we provide the hypothesis that coral-associated microorganisms may directly or indirectly affect the coral's phenotypic response through the modulation of its epigenome. Homologs of ankyrin-repeat protein A and internalin B, which indirectly cause histone modifications in humans, as well as Rv1988 histone methyltransferase, and the DNA methyltransferases Rv2966c, Mhy1, Mhy2, and Mhy3 found in coral-associated bacteria indicate that there are potential host epigenome-modifying proteins in the coral microbiome. With the ideas presented here, we suggest that microbiome manipulation may be a means to alter a coral's epigenome, which could aid the current efforts to protect coral reefs. Also see the video abstract here: https://youtu.be/CW9GbChjKM4.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/genética , Recifes de Corais , Epigênese Genética , Humanos , Microbiota/genética , Simbiose
13.
Environ Microbiol ; 24(5): 2299-2314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35229422

RESUMO

The diversity and function of sponge-associated symbionts is now increasingly understood; however, we lack an understanding of how they dynamically behave to ensure holobiont stability in the face of environmental variation. Here, we performed a metatransciptomic analysis on three microbial symbionts of the sponge Cymbastela concentrica in situ over 14 months and through differential gene expression and correlation analysis to environmental variables uncovered differences that speak to their metabolic activities and level of symbiotic and environmental interactions. The nitrite-oxidizing Ca. Porinitrospira cymbastela maintained a seemingly stable metabolism, with the few differentially expressed genes related only to stress responses. The heterotrophic Ca. Porivivens multivorans displayed differential use of holobiont-derived compounds and respiration modes, while the ammonium-oxidizing archaeon Ca. Nitrosopumilus cymbastelus differentially expressed genes related to phosphate metabolism and symbiosis effectors. One striking similarity between the symbionts was their similar variation in expression of stress-related genes. Our time-series study showed that the microbial community of C. concentrica undertakes dynamic gene expression adjustments in response to the surroundings, tuned to deal with general stress and metabolic interactions between holobiont members. The success of these dynamic adjustments likely underpins the stability of the sponge holobiont and may provide resilience against environmental change.


Assuntos
Microbiota , Poríferos , Animais , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Filogenia , Simbiose/fisiologia
14.
Environ Microbiol ; 23(5): 2532-2549, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33754443

RESUMO

Sponges have recently been recognized to contain complex communities of bacteriophages; however, little is known about how they interact with their bacterial hosts. Here, we isolated a novel phage, called Ruegeria phage Tedan, and characterized its impact on the bacterial sponge symbiont Ruegeria AU67 on a morphological and molecular level. Phage Tedan was structurally, genomically and phylogenetically characterized to be affiliated with the genus Xiamenvirus of the family Siphoviridae. Through microscopic observations and transcriptomic analysis, we show that phage Tedan upon infection induces a process leading to metabolic and morphological changes in its host. These changes would render Ruegeria AU67 better adapted to inhabit the sponge holobiont due to an improved utilization of ecologically relevant energy and carbon sources as well as a potential impediment of phagocytosis by the sponge through cellular enlargement. An increased survival or better growth of the bacterium in the sponge environment will likely benefit the phage reproduction. Our results point towards the possibility that phages from host-associated environments require, and have thus evolved, different strategies to interact with their host when compared to those phages from free-living or planktonic environments.


Assuntos
Bacteriófagos , Poríferos/microbiologia , Rhodobacteraceae , Siphoviridae , Animais , Bacteriófagos/genética , Rhodobacteraceae/virologia
15.
Appl Environ Microbiol ; 87(19): e0076921, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34288701

RESUMO

Phaeobacter inhibens 2.10 is an effective biofilm former on marine surfaces and has the ability to outcompete other microorganisms, possibly due to the production of the plasmid-encoded secondary metabolite tropodithietic acid (TDA). P. inhibens 2.10 biofilms produce phenotypic variants with reduced competitiveness compared to the wild type. In the present study, we used longitudinal, genome-wide deep sequencing to uncover the genetic foundation that contributes to the emergent phenotypic diversity in P. inhibens 2.10 biofilm dispersants. Our results show that phenotypic variation is not due to the loss of the plasmid that carries the genes for TDA synthesis but instead show that P. inhibens 2.10 biofilm populations become rapidly enriched in single nucleotide variations in genes involved in the synthesis of TDA. While variants in genes previously linked to other phenotypes, such as lipopolysaccharide production (i.e., rfbA) and cellular persistence (i.e., metG), also appear to be selected for during biofilm dispersal, the number and consistency of variations found for genes involved in TDA production suggest that this metabolite imposes a burden on P. inhibens 2.10 cells. Our results indicate a strong selection pressure for the loss of TDA in monospecies biofilm populations and provide insight into how competition (or a lack thereof) in biofilms might shape genome evolution in bacteria. IMPORTANCE Biofilm formation and dispersal are important survival strategies for environmental bacteria. During biofilm dispersal, cells often display stable and heritable variants from the parental biofilm. Phaeobacter inhibens is an effective colonizer of marine surfaces, in which a subpopulation of its biofilm dispersal cells displays a noncompetitive phenotype. This study aimed to elucidate the genetic basis of these phenotypic changes. Despite the progress made to date in characterizing the dispersal variants in P. inhibens, little is understood about the underlying genetic changes that result in the development of the specific variants. Here, P. inhibens phenotypic variation was linked to single nucleotide polymorphisms (SNPs), in particular in genes affecting the competitive ability of P. inhibens, including genes related to the production of the antibiotic tropodithietic acid (TDA) and bacterial cell-cell communication (e.g., quorum sensing). This work is significant as it reveals how the biofilm lifestyle might shape genome evolution in a cosmopolitan bacterium.


Assuntos
Biofilmes/crescimento & desenvolvimento , Rhodobacteraceae , Evolução Molecular , Variação Genética , Mutação , Fenótipo , Rhodobacteraceae/genética , Rhodobacteraceae/crescimento & desenvolvimento , Rhodobacteraceae/metabolismo , Rhodobacteraceae/fisiologia , Tropolona/análogos & derivados , Tropolona/metabolismo
16.
BMC Microbiol ; 21(1): 20, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33421992

RESUMO

BACKGROUND: The analysis of blow microbiota has been proposed as a biomarker for respiratory health analysis in cetaceans. Yet, we lack crucial knowledge on the long-term stability of the blow microbiota and its potential changes during disease. Research in humans and mice have provided evidence that respiratory disease is accompanied by a shift in microbial communities of the airways. We investigate here the stability of the community composition of the blow microbiota for 13 captive bottlenose dolphins over eight months including both sick and healthy individuals. We used barcoded tag sequencing of the bacterial 16S rRNA gene. Four of the dolphins experienced distinct medical conditions and received systemic antimicrobial treatment during the study. RESULTS: We showed that each dolphin harboured a unique community of zero-radius operational taxonomic units (zOTUs) that was present throughout the entire sampling period ('intra-core'). Although for most dolphins there was significant variation over time, overall the intra-core accounted for an average of 73% of relative abundance of the blow microbiota. In addition, the dolphins shared between 8 and 66 zOTUs on any of the sampling occasions ('inter-core'), accounting for a relative abundance between 17 and 41% of any dolphin's airway microbiota. The majority of the intra-core and all of the inter-core zOTUs in this study are commonly found in captive and free-ranging dolphins and have previously been reported from several different body sites. While we did not find a clear effect of microbial treatment on blow microbiota, age and sex of the dolphins did have such an effect. CONCLUSIONS: The airways of dolphins were colonized by an individual intra-core 'signature' that varied in abundance relative to more temporary bacteria. We speculate that the intra-core bacteria interact with the immune response of the respiratory tract and support its function. This study provides the first evidence of individual-specific airway microbiota in cetaceans that is stable over eight months.


Assuntos
Bactérias/classificação , Golfinho Nariz-de-Garrafa/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Animais , Animais Selvagens/classificação , Animais Selvagens/microbiologia , Animais de Zoológico/classificação , Animais de Zoológico/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Golfinho Nariz-de-Garrafa/classificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Masculino , Filogenia , Sistema Respiratório/microbiologia , Manejo de Espécimes
17.
Exp Eye Res ; 207: 108609, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932398

RESUMO

Animal models are a critical element of ocular surface research for investigating therapeutic drops, surgical implants, and infection research. This study was a comparative analysis of the microbial communities on conjunctival tissue samples from humans compared to several commonly used laboratory animals (BALB/c mice, New Zealand white rabbits and IMVS colored stock guinea pigs). Microbial communities were analyzed by extracting total DNA from conjunctival tissue and sequencing the 16 S rRNA gene using the Illumina MiSeq platform. Sequences were quality filtered using the UNOISE pipeline in USEARCH and taxonomically classified using GTDB database. Sequences associated with blank extraction and sampling negative controls were removed with the decontam R software package prior to downstream analysis. There was a difference in the diversity measures of richness (P = 0.0124) and Shannon index (P = 0.0002) between humans and rabbits but not between human, mouse and guinea pigs. There was a difference between the human and any animal for bacterial community structure (P = 0.006). There was a higher degree of similarity between the bacterial composition of the human and mouse samples with each dominated by the phyla Proteobacteria and Firmicutes. The use of mouse models may be more appropriate for studies investigating changes to the ocular microbiome due to interventions such as application of antibiotics due to greater similarities in bacterial community structure and composition to humans.


Assuntos
Bactérias/isolamento & purificação , Túnica Conjuntiva/microbiologia , DNA Bacteriano/genética , Microbiota/genética , Adolescente , Adulto , Animais , Feminino , Cobaias , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Animais , RNA Ribossômico 16S/genética , Coelhos , Análise de Sequência de DNA , Adulto Jovem
18.
FASEB J ; 34(3): 4783-4797, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32039529

RESUMO

Coffee brewing produces spent coffee grounds as waste; few studies have investigated the health benefits of these grounds. This study investigated responses to spent coffee grounds in a diet-induced rat model of metabolic syndrome. Male Wistar rats aged 8-9 weeks were fed either corn starch-rich diet or high-carbohydrate, high-fat diet for 16 weeks, which were supplemented with 5% spent coffee grounds during the last 8 weeks. Rats fed non-supplemented diets were used as controls. High-carbohydrate, high-fat diet-fed rats developed metabolic syndrome including abdominal obesity, impaired glucose tolerance, dyslipidemia, and cardiovascular and liver damage. Body weight, abdominal fat, total body fat mass, systolic blood pressure, and concentrations of plasma triglycerides and non-esterified fatty acids were reduced by spent coffee grounds along with improved glucose tolerance and structure and function of heart and liver. Spent coffee grounds increased the diversity of the gut microbiota and decreased the ratio of Firmicutes to Bacteroidetes. Changes in gut microbiota correlated with the reduction in obesity and improvement in glucose tolerance and systolic blood pressure. These findings indicate that intervention with spent coffee grounds may be useful for managing obesity and metabolic syndrome by altering the gut microbiota, thus increasing the value of this food waste.


Assuntos
Café/química , Microbioma Gastrointestinal/fisiologia , Síndrome Metabólica/dietoterapia , Animais , Composição Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Masculino , Síndrome Metabólica/etiologia , Análise Multivariada , Ratos , Ratos Wistar
19.
J Phycol ; 57(5): 1504-1516, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33942303

RESUMO

Infectious diseases affecting habitat-forming species can have significant impacts on population dynamics and alter the structure and functioning of marine ecosystems. Recently, a fungal infection was described as the causative agent of necrotic lesions on the stipe of the forest-forming macroalga Phyllospora comosa, a disease named "stipe rot" (SR). Here, we developed a quantitative PCR (qPCR) method for rapid detection and quantification of this pathogen, which was applied to evaluate the level of SR infection in eight P. comosa populations spanning the entire latitudinal distribution of this species along southeastern Australia. We also investigated the relationship between the abundance and prevalence of Stipe Rot Fungus (SRF) and potential host chemical defenses as well as its relationship with morphological and ecophysiological traits of P. comosa. qPCR estimates of SRF abundance reflected the levels of infection estimated by visual assessment, with higher numbers of SRF copies being observed in individuals showing high or intermediate levels of visual symptoms of SR. Concordance of conventional PCR and visual assessments was 92 and 94%, respectively, compared to qPCR detection. SRF prevalence was positively related to fucoxanthin content and herbivory, but not significant related to other traits measured (phlorotannin content, total length, thallus diameter, stipe width, number of branches, frond width, fouling, bleaching, gender, and photosynthetic efficiency). These results provide confidence for previous reports of this disease based upon visual assessments only, contribute to the development of monitoring and conservation strategies for safeguarding P. comosa forests, and generate insights into potential factors influencing host-pathogen interactions in this system.


Assuntos
Fungos/patogenicidade , Phaeophyceae , Alga Marinha , Ecossistema , Herbivoria , Phaeophyceae/microbiologia , Alga Marinha/microbiologia
20.
PLoS Genet ; 14(11): e1007735, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30399141

RESUMO

Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased ß-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.


Assuntos
Estudos de Associação Genética , Genótipo , Fenótipo , Animais , DNA Mitocondrial , Dieta , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Aptidão Genética , Haplótipos , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaboloma , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação , Conformação Proteica , Reprodutibilidade dos Testes , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA