Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34244444

RESUMO

Synaptic vesicle (SV) release, recycling, and plastic changes of release probability co-occur side by side within nerve terminals and rely on local Ca2+ signals with different temporal and spatial profiles. The mechanisms that guarantee separate regulation of these vital presynaptic functions during action potential (AP)-triggered presynaptic Ca2+ entry remain unclear. Combining Drosophila genetics with electrophysiology and imaging reveals the localization of two different voltage-gated calcium channels at the presynaptic terminals of glutamatergic neuromuscular synapses (the Drosophila Cav2 homolog, Dmca1A or cacophony, and the Cav1 homolog, Dmca1D) but with spatial and functional separation. Cav2 within active zones is required for AP-triggered neurotransmitter release. By contrast, Cav1 localizes predominantly around active zones and contributes substantially to AP-evoked Ca2+ influx but has a small impact on release. Instead, L-type calcium currents through Cav1 fine-tune short-term plasticity and facilitate SV recycling. Separate control of SV exo- and endocytosis by AP-triggered presynaptic Ca2+ influx through different channels demands efficient measures to protect the neurotransmitter release machinery against Cav1-mediated Ca2+ influx. We show that the plasma membrane Ca2+ ATPase (PMCA) resides in between active zones and isolates Cav2-triggered release from Cav1-mediated dynamic regulation of recycling and short-term plasticity, two processes which Cav2 may also contribute to. As L-type Cav1 channels also localize next to PQ-type Cav2 channels within axon terminals of some central mammalian synapses, we propose that Cav2, Cav1, and PMCA act as a conserved functional triad that enables separate control of SV release and recycling rates in presynaptic terminals.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Endocitose , Exocitose , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Vesículas Sinápticas/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas , Probabilidade , Receptores de Glutamato/metabolismo
2.
Biol Res ; 56(1): 49, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710314

RESUMO

BACKGROUND: The endoplasmic reticulum (ER) contacts endosomes in all parts of a motor neuron, including the axon and presynaptic terminal, to move structural proteins, proteins that send signals, and lipids over long distances. Atlastin (Atl), a large GTPase, is required for membrane fusion and the structural dynamics of the ER tubules. Atl mutations are the second most common cause of Hereditary Spastic Paraplegia (HSP), which causes spasticity in both sexes' lower extremities. Through an unknown mechanism, Atl mutations stimulate the BMP (bone morphogenetic protein) pathway in vertebrates and Drosophila. Synaptic defects are caused by atl mutations, which affect the abundance and distribution of synaptic vesicles (SV) in the bouton. We hypothesize that BMP signaling, does not cause Atl-dependent SV abnormalities in Drosophila. RESULTS: We show that atl knockdown in motor neurons (Atl-KD) increases synaptic and satellite boutons in the same way that constitutively activating the BMP-receptor Tkv (thick veins) (Tkv-CA) increases the bouton number. The SV proteins Cysteine string protein (CSP) and glutamate vesicular transporter are reduced in Atl-KD and Tkv-CA larvae. Reducing the activity of the BMP receptor Wishful thinking (wit) can rescue both phenotypes. Unlike Tkv-CA larvae, Atl-KD larvae display altered activity-dependent distributions of CSP staining. Furthermore, Atl-KD larvae display an increased FM 1-43 unload than Control and Tkv-CA larvae. As decreasing wit function does not reduce the phenotype, our hypothesis that BMP signaling is not involved is supported. We also found that Rab11/CSP colocalization increased in Atl-KD larvae, which supports the concept that late recycling endosomes regulate SV movements. CONCLUSIONS: Our findings reveal that Atl modulates neurotransmitter release in motor neurons via SV distribution independently of BMP signaling, which could explain the observed SV accumulation and synaptic dysfunction. Our data suggest that Atl is involved in membrane traffic as well as formation and/or recycling of the late endosome.


Assuntos
Proteínas de Drosophila , Vesículas Sinápticas , Animais , Feminino , Masculino , Transporte Biológico , Drosophila , Proteínas de Drosophila/genética , Receptores de Superfície Celular , Transmissão Sináptica
3.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674959

RESUMO

The strength of Ca2+ signaling is a hallmark of T cell activation, yet the role of Ca2+ homeostasis in developing T cells before expressing a mature T cell receptor is poorly understood. We aimed to unveil specific functions of the two plasma membrane Ca2+ ATPases expressed in T cells, PMCA1 and PMCA4. On a transcriptional and protein level we found that PMCA4 was expressed at low levels in CD4-CD8- double negative (DN) thymocytes and was even downregulated in subsequent stages while PMCA1 was present throughout development and upregulated in CD4+CD8+ double positive (DP) thymocytes. Mice with a targeted deletion of Pmca1 in DN3 thymocytes had an almost complete block of DP thymocyte development with an accumulation of DN4 thymocytes but severely reduced numbers of CD8+ immature single positive (ISP) thymocytes. The DN4 thymocytes of these mice showed strongly elevated basal cytosolic Ca2+ levels and a pre-mature CD5 expression, but in contrast to the DP thymocytes they were only mildly prone to apoptosis. Surprisingly, mice with a germline deletion of Pmca4 did not show any signs of altered progression through the developmental thymocyte stages, nor altered Ca2+ homeostasis throughout this process. PMCA1 is, therefore, non-redundant in keeping cellular Ca2+ levels low in the early thymocyte development required for the DN to DP transition.


Assuntos
Adenosina Trifosfatases , Timócitos , Camundongos , Animais , Timócitos/metabolismo , Antígenos CD8/metabolismo , Adenosina Trifosfatases/metabolismo , Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Homeostase , Diferenciação Celular/genética , Timo/metabolismo
4.
Eur J Immunol ; 51(3): 594-602, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098669

RESUMO

The amplitude and duration of Ca2+ signaling is crucial for B-cell development and self-tolerance; however, the mechanisms for terminating Ca2+ signals in B cells have not been determined. In lymphocytes, plasma membrane Ca2+ ATPase (PMCA) isoforms 1 and 4 (PMCA1 and PMCA4, aka ATP2B1 and ATP2B4) are the main candidates for expelling Ca2+ from the cell through the plasma membrane. We report here that Pmca4 (Atp2b4) KO mice had normal B-cell development, while mice with a conditional KO of Pmca1 (Atp2b1) had greatly reduced numbers of B cells, particularly splenic follicular B cells, marginal zone B cells, and peritoneal B-1a cells. Mouse and naïve human B cells showed only PMCA1 expression and no PMCA4 by western blot, in contrast to T cells, which did express PMCA4. Calcium handling was normal in Pmca4-/- B cells, but Pmca1 KO B cells had elevated basal levels of Ca2+ , elevated levels in ER stores, and reduced Ca2+ clearance. These findings show that the PMCA1 isoform alone is required to ensure normal B-cell Ca2+ signaling and development, which may have implications for therapeutic targeting of PMCAs and Ca2+ in B cells.


Assuntos
Linfócitos B/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Homeostase/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
5.
J Neurogenet ; 35(3): 306-319, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33688796

RESUMO

Larval Drosophila are used as a genetically accessible study case in many areas of biological research. Here we report a fast, robust and user-friendly procedure for the whole-body multi-fluorescence imaging of Drosophila larvae; the protocol has been optimized specifically for larvae by systematically tackling the pitfalls associated with clearing this small but cuticularized organism. Tests on various fluorescent proteins reveal that the recently introduced monomeric infrared fluorescent protein (mIFP) is particularly suitable for our approach. This approach comprises an effective, low-cost clearing protocol with minimal handling time and reduced toxicity in the reagents employed. It combines a success rate high enough to allow for small-scale screening approaches and a resolution sufficient for cellular-level analyses with light sheet and confocal microscopy. Given that publications and database documentations typically specify expression patterns of transgenic driver lines only within a given organ system of interest, the present procedure should be versatile enough to extend such documentation systematically to the whole body. As examples, the expression patterns of transgenic driver lines covering the majority of neurons, or subsets of chemosensory, central brain or motor neurons, are documented in the context of whole larval body volumes (using nsyb-Gal4, IR76b-Gal4, APL-Gal4 and mushroom body Kenyon cells, or OK371-Gal4, respectively). Notably, the presented protocol allows for triple-color fluorescence imaging with near-infrared, red and yellow fluorescent proteins.


Assuntos
Animais Geneticamente Modificados , Imageamento Tridimensional/métodos , Imagem Óptica/métodos , Animais , Drosophila , Proteínas de Fluorescência Verde , Larva , Microscopia Confocal/métodos , Transgenes
6.
J Neurosci ; 37(48): 11592-11604, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29074576

RESUMO

Human genetic studies support that loss-of-function mutations in the SH3 domain and ankyrin repeat containing family proteins (SHANK1-3), the large synaptic scaffolding proteins enriched at the postsynaptic density of excitatory synapses, are causative for autism spectrum disorder and other neuropsychiatric disorders in humans. To better understand the in vivo functions of Shank and facilitate dissection of neuropathology associated with SHANK mutations in human, we generated multiple mutations in the Shank gene, the only member of the SHANK family in Drosophila melanogaster Both male and female Shank null mutants were fully viable and fertile with no apparent morphological or developmental defects. Expression analysis revealed apparent enrichment of Shank in the neuropils of the CNS. Specifically, Shank coexpressed with another PSD scaffold protein, Homer, in the calyx of mushroom bodies in the brain. Consistent with high expression in mushroom body calyces, Shank mutants show an abnormal calyx structure and reduced olfactory acuity. These morphological and functional phenotypes were fully rescued by pan-neuronal reexpression of Shank, and only partially rescued by presynaptic but no rescue by postsynaptic reexpression of Shank. Our findings thus establish a previously unappreciated presynaptic function of Shank.SIGNIFICANCE STATEMENT Mutations in SHANK family genes are causative for idiopathic autism spectrum disorder. To understand the neural function of Shank, a large scaffolding protein enriched at the postsynaptic densities, we examined the role of Drosophila Shank in synapse development at the peripheral neuromuscular junctions and the central mushroom body calyx. Our results demonstrate that, in addition to its conventional postsynaptic function, Shank also acts presynaptically in synapse development in the brain. This study offers novel insights into the synaptic role of Shank.


Assuntos
Proteínas do Tecido Nervoso/fisiologia , Proteínas do Tecido Nervoso/ultraestrutura , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Animais , Animais Geneticamente Modificados , Drosophila , Feminino , Masculino , Corpos Pedunculados/fisiologia , Corpos Pedunculados/ultraestrutura , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura
7.
Stroke ; 48(8): 2206-2210, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28626055

RESUMO

BACKGROUND AND PURPOSE: The introduction of stent retrievers allows for a complete extraction and histological analysis of human thrombi. Ischemic stroke is a major health issue, and differentiation of underlying causes is highly relevant to prevent recurrent stroke. Therefore, histopathologic analysis of the embolic clots after removal may provide valuable information about underlying pathologies. This study analyzes histological clot composition and aims to identify specific patterns that might help to distinguish causes of ischemic stroke. METHODS: Patients with occlusion of the carotid-T or middle cerebral artery who underwent thrombectomy at our university medical center between December 2013 and February 2016 were included. Samples were histologically analyzed (hematoxylin and eosin, Elastica van Gieson, and Prussian blue), additionally immunohistochemistry for CD3, CD20, and CD68/KiM1P was performed. These data, along with additional clinical and interventional parameters, were compared for different stroke subtypes, as defined by the TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification. RESULTS: One hundred eighty-seven patients were included, of these, in 77 patients, cardioembolic; in 46 patients, noncardioembolic; and in 64 patients, cryptogenic pathogenesis was determined. Cardioembolic thrombi had higher proportions of fibrin/platelets (P=0.027), less erythrocytes (P=0.005), and more leucocytes (P=0.026) than noncardioembolic thrombi. We observed a strong overlap of cryptogenic strokes and cardioembolic strokes concerning thrombus histology. The immunohistochemical parameters CD3, CD20, and CD68/KiM1P showed no statistically noticeable differences between stroke subtypes. CONCLUSIONS: Histological thrombus features vary significantly according to the underlying cause and may help to differentiate between cardioembolic and noncardioembolic stroke. In addition, our study supports the hypothesis that most cryptogenic strokes have a cardioembolic cause.


Assuntos
Isquemia Encefálica/patologia , Acidente Vascular Cerebral/patologia , Trombose/patologia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/cirurgia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/cirurgia , Trombectomia/tendências , Trombose/cirurgia
8.
J Immunol ; 192(7): 3228-38, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24591366

RESUMO

Thymocytes mature in a series of stages by migrating through specific areas of the thymus and interacting with other cells to receive the necessary developmental signals; however, little is known about the molecular mechanisms governing this migration. We report that murine thymocytes with a knockout mutation in α-PAK (p21-activated kinase)-interacting exchange factor (PIX; Arhgef6), an activator of Rho GTPases, showed greatly increased motility and altered morphology in two-dimensional migration on ICAM-1. αPIX was also required for efficient positive selection, but not negative selection, of thymocytes. TCR signaling was normal in αPix(-) thymocytes, indicating that the effects of αPIX on positive selection are largely independent of TCR signaling. αPix(-) thymocytes also paused less during migration in the thymic cortex, interacted less with ICAM-1 coated beads, and could overcome TCR stop signals, consistent with defective scanning behavior. These results identify αPIX as a regulator of thymocyte migration and subsequent arrest that is linked to positive selection.


Assuntos
Movimento Celular/imunologia , Fatores de Troca de Nucleotídeo Guanina Rho/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Movimento Celular/genética , Células Cultivadas , Citometria de Fluxo , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Timócitos/citologia , Timócitos/metabolismo , Timo/citologia , Timo/metabolismo
9.
J Cell Sci ; 125(Pt 15): 3578-89, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22467854

RESUMO

Many developmental processes rely on cortical actin dynamics; however, the mechanisms of its fine control at the cell cortex are still largely unknown. Our analyses demonstrate that the lipid- and F-actin-binding protein Abp1 is crucial for actin-driven bristle development in Drosophila melanogaster. Combined genetic, cell biological and biochemical analyses reveal that Abp1 triggers cortical Arp2/3-mediated actin nucleation by complex formation with Scar in bristle development. The role of the plasma-membrane-associated Abp1 subpool was highlighted by constitutively membrane-anchored Abp1. Such gain-of-function experiments led to a severe split-bristle phenotype, which was negatively correlated with bristle length. This phenotype was dependent on Scar but not on WASP and required the Scar-interacting SH3 domain of Abp1. Strikingly, knockout of abp1 led to defects in both microchaete and macrochaete bristle integrity. Importantly, Arp2- and Scar-deficient flies displayed similar bristle phenotypes. Microchaetes of flies deficient for Abp1, Arp2 and Scar functions had kinks, whereas those of wasp heterozygous flies did not. Electron microscopy analyses revealed that abp1 knockout, Arp2 RNAi and Scar RNAi all led to distorted macrochaetes with an excessive number of ridges. Interestingly, despite the physical association of Abp1 with Scar and its ability to use the Arp2/3 complex activator as an effector, abp1 knockout did not affect Scar stability. This is in contrast to classical Scar complex components, such as Kette or Sra-1. Our work reveals that Abp1 is an important, Scar-interacting factor controlling cortical Arp2/3-mediated actin nucleation and unravels a novel layer of complexity in the scrupulous control of cortical actin nucleation during sensory organ formation.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas dos Microfilamentos/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/química , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/química , Actinas/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Interferência de RNA , Transdução de Sinais , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Domínios de Homologia de src
10.
Clin Pharmacol Ther ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708948

RESUMO

Targeted protein degraders (TPDs), an emerging therapeutic modality, are attracting considerable interest with the promise to address disease-related proteins that are not druggable with conventional small molecule inhibitors. Despite their novel mechanism of action, the PK/PD relationship of degraders is still approached with a mindset deeply rooted in inhibitor drugs. Here, we establish how predictive mechanistic modeling specifically tailored to TPDs can significantly enhance the value of the available information during lead generation and optimization. By integrating the results from in vitro assays with routinely collected PK data, modeling accurately predicts degradation in vivo. These predictions transform the prioritization of compounds for in vivo studies as well as the selection of optimal dose schedules and most informative measurement time points with the least number of animals. Moreover, the comprehensive modeling framework (1) identifies the PK/PD driver of targeted protein degradation and subsequent downstream pharmacodynamic effects, and (2) uncovers the fundamental difference between degrader and inhibitor PK/PD relationships. The practical utility of our predictive modeling is demonstrated with relevant use cases. This framework will allow researchers to transition from current, mostly serendipity-based approaches to more sound model-informed decision making. Going forward, the presented predictive PK/PD modeling framework lays out a rational path to incorporate inter-species differences in the pharmacology and thus promises to help with getting the dose right in clinical trials.

11.
Mol Immunol ; 170: 57-59, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615628

RESUMO

Neuroplastin, a paralog of CD147/Basigin, is known as a neuronal cell adhesion molecule and as an auxiliary subunit of plasma membrane calcium ATPases in both neurons and adaptive immune cells. Recently, an interesting study by Ren et al. (2022) provided evidence for an important role of neuroplastin in macrophages during bacterial infection. Here, we critically discuss one aspect of this study, the assignment of this role to Np65 as one of two prominent splice variants of neuroplastin.


Assuntos
Macrófagos , Isoformas de Proteínas , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Animais , Isoformas de Proteínas/genética
12.
J Pharmacol Toxicol Methods ; 128: 107529, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857637

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) have found utility for conducting in vitro drug screening and disease modelling to gain crucial insights into pharmacology or disease phenotype. However, diseases such as atrial fibrillation, affecting >33 M people worldwide, demonstrate the need for cardiac subtype-specific cells. Here, we sought to investigate the base characteristics and pharmacological differences between commercially available chamber-specific atrial or ventricular hiPSC-CMs seeded onto ultra-thin, flexible PDMS membranes to simultaneously measure contractility in a 96 multi-well format. We investigated the effects of GPCR agonists (acetylcholine and carbachol), a Ca2+ channel agonist (S-Bay K8644), an HCN channel antagonist (ivabradine) and K+ channel antagonists (4-AP and vernakalant). We observed differential effects between atrial and ventricular hiPSC-CMs on contractile properties including beat rate, beat duration, contractile force and evidence of arrhythmias at a range of concentrations. As an excerpt of the compound analysis, S-Bay K8644 treatment showed an induced concentration-dependent transient increase in beat duration of atrial hiPSC-CMs, whereas ventricular cells showed a physiological increase in beat rate over time. Carbachol treatment produced marked effects on atrial cells, such as increased beat duration alongside a decrease in beat rate over time, but only minimal effects on ventricular cardiomyocytes. In the context of this chamber-specific pharmacology, we not only add to contractile characterization of hiPSC-CMs but propose a multi-well platform for medium-throughput early compound screening. Overall, these insights illustrate the key pharmacological differences between chamber-specific cardiomyocytes and their application on a multi-well contractility platform to gain insights for in vitro cardiac liability studies and disease modelling.

13.
Environ Sci Pollut Res Int ; 31(13): 19917-19926, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38368298

RESUMO

Freshwater organisms are suitable models to study the fate of environmental pollutants. Due to their versatile and everyday use, many environmental pollutants such as triclocarban (TCC) or multi-walled carbon nanotubes (MWCNTs) enter environmental compartments very easily. TCC is known as a disinfectant and is declared as a highly aquatic toxicant. Multi-walled carbon nanotubes are used, e.g., in the automotive industry to improve plastic properties. Both TCCs and MWCNTs can pose major pollution hazards to various organisms. In addition, these substances can bind to each other due to their tendency to interact via strong hydrophobic interactions. Therefore, a short-term test was conducted to investigate the effects of the individual chemicals TCC and weathered MWCNTs (wMWCNTs) on a benthic biofilm and a grazing organism, Lymnaea stagnalis. Furthermore, the two compounds were coupled by an adsorption experiment resulting in a coupled complex formation (TCC + wMWCNTs). L. stagnalis showed no effects in terms of mortality. For benthic biofilm, the coupling test (TCC + wMWCNTs) showed a decrease of 58% in chlorophyll a (Chl-a) concentration. The main effect could be attributed to the wMWCNTs' exposure alone (decrease of 82%), but not to presence of TCC. The concentration range of Chl-a upon TCC exposure alone was comparable to that in the control group (32 and 37 µg/cm2). With respect to the particulate organic carbon (POC) concentration, very similar results were found for the solvent control, the TCC, and also for the TCC + wMWCNTs group (3, 2.9, and 2.9 mg/cm2). In contrast to the control, a significant increase in POC concentration (100%) was observed for wMWCNTs, but no synergistic effect of TCC + wMWCNTs was detected.


Assuntos
Carbanilidas , Poluentes Ambientais , Nanotubos de Carbono , Poluentes Químicos da Água , Nanotubos de Carbono/química , Clorofila A , Poluentes Químicos da Água/análise
14.
Commun Biol ; 7(1): 706, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851788

RESUMO

When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG. To test this hypothesis, a pan-European sampling campaign was performed for structured forest soil and dynamic riverbed environments of low anthropogenic impact. In soils, higher diversity, evenness and richness were significantly negatively correlated with relative abundance of >85% of ARGs. Furthermore, the number of detected ARGs per sample were inversely correlated with diversity. However, no such effects were present in the more dynamic riverbeds. Hence, microbiome diversity can serve as a barrier towards antimicrobial resistance dissemination in stationary, structured environments, where long-term, diversity-based resilience against immigration can evolve.


Assuntos
Biodiversidade , Farmacorresistência Bacteriana , Microbiota , Microbiologia do Solo , Microbiota/genética , Farmacorresistência Bacteriana/genética , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Genes Bacterianos , Rios/microbiologia , Antibacterianos/farmacologia , Ecossistema
15.
Pharmaceutics ; 15(1)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678824

RESUMO

The field of targeted protein degradation is growing exponentially. Yet, there is an unmet need for pharmacokinetic/pharmacodynamic models that provide mechanistic insights, while also being practically useful in a drug discovery setting. Therefore, we have developed a comprehensive modeling framework which can be applied to experimental data from routine projects to: (1) assess PROTACs based on accurate degradation metrics, (2) guide compound optimization of the most critical parameters, and (3) link degradation to downstream pharmacodynamic effects. The presented framework contains a number of first-time features: (1) a mechanistic model to fit the hook effect in the PROTAC concentration-degradation profile, (2) quantification of the role of target occupancy in the PROTAC mechanism of action and (3) deconvolution of the effects of target degradation and target inhibition by PROTACs on the overall pharmacodynamic response. To illustrate applicability and to build confidence, we have employed these three models to analyze exemplary data on various compounds from different projects and targets. The presented framework allows researchers to tailor their experimental work and to arrive at a better understanding of their results, ultimately leading to more successful PROTAC discovery. While the focus here lies on in vitro pharmacology experiments, key implications for in vivo studies are also discussed.

16.
Sci Adv ; 9(7): eade7804, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800417

RESUMO

At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.


Assuntos
Proteínas de Drosophila , Sinapses , Animais , Sinapses/metabolismo , Drosophila/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas de Drosophila/metabolismo , Transmissão Sináptica
17.
Environ Sci Pollut Res Int ; 30(1): 407-419, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35900624

RESUMO

Freshwater grazers are suitable organisms to investigate the fate of environmental pollutants, such as weathered multi-walled carbon nanotubes (wMWCNTs). One key process is the uptake of ingested materials into digestive or absorptive cells. To address this, we investigated the localization of wMWCNTs in the intestinal tracts of the mud snail Lymnaea stagnalis (L. stagnalis) and the mayfly Rhithrogena semicolorata (R. semicolorata). In L. stagnalis, bundles of wMWCNTs could be detected in the midgut lumen, whereas only single wMWCNTs could be detected in the lumina of the digestive gland. Intracellular uptake of wMWCNTs was detected by transmission electron microscopy (TEM) but was restricted to the cells of the digestive gland. In larvae of R. semicolorata, irritations of the microvilli and damages in the apical parts of the epithelial gut cells were detected after feeding with 1 to 10 mg/L wMWCNTs. In both models, we detected fibrillar structures in close association with the epithelial cells that formed peritrophic membranes (PMs). The PM may cause a reduced transmission of wMWCNT bundles into the epithelium by forming a filter barrier and potentially protecting the cells from the wMWCNTs. As a result, the uptake of wMWCNTs into cells is rare in mud snails and may not occur at all in mayfly larvae. In addition, we monitor physiological markers such as levels of glycogen or triglycerides and the RNA/DNA ratio. This ratio was significantly affected in L. stagnalis after 24 days with 10 mg/L wMWCNTs, but not in R. semicolorata after 28 days and 10 mg/L wMWCNTs. However, significant effects on the energy status of R. semicolorata were analysed after 28 days of exposure to 1 mg/L wMWCNTs. Furthermore, we observed a significant reduction of phagosomes per enterocyte cell in mayfly larvae at a concentration of 10 mg/L wMWCNTs (p < 0.01).


Assuntos
Ephemeroptera , Nanotubos de Carbono , Animais , Lymnaea/fisiologia , Larva , Células Epiteliais , Água Doce
18.
Synapse ; 66(2): 142-50, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21987493

RESUMO

Activity-dependent synaptic plasticity is associated with synaptic protein turnover involving the ubiquitin proteasome system (UPS) for protein degradation. In primary hippocampal cell culture, it has been shown that increased or decreased activity of synaptic transmission can regulate the amount of postsynaptic density (PSD) proteins via UPS. However, the specific spatio-temporal dynamic of PSD protein degradation after LTP induction and its downstream signaling pathways remains to be clarify. We used confocal microscopy to monitor levels of eGFP-tagged SPAR (spine-associated Rap GTPase activating protein) expressed in acute hippocampal slices and found that LTP induction triggered a UPS-dependent decay of eGFP-SPAR fluorescence. SPAR degradation was reduced upon inhibition of cyclin-dependent kinase 5 (CDK5) as well as by a protein synthesis inhibitor. Comparison of eGFP-tagged SPAR levels with those obtained in control experiments with eGFP revealed a protein synthesis-independent component of LTP-associated SPAR degradation. This second component required UPS and NMDA receptor activation but not CDK5. We conclude that LTP triggers a down regulation of SPAR by two complementary mechanisms, one of which has previously been described to mediate homeostatic plasticity.


Assuntos
Região CA1 Hipocampal/metabolismo , Regulação para Baixo/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Animais , Região CA1 Hipocampal/enzimologia , Região CA1 Hipocampal/fisiologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Neurônios/enzimologia , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Wistar
19.
Adv Exp Med Biol ; 970: 3-28, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22351049

RESUMO

The molecular and cellular mechanisms that control the composition and functionality of ionotropic glutamate receptors may be considered as most important "set screws" for adjusting excitatory transmission in the course of developmental and experience-dependent changes within neural networks. The Drosophila larval neuromuscular junction has emerged as one important invertebrate model system to study the formation, maintenance, and plasticity-related remodeling of glutamatergic synapses in vivo. By exploiting the unique genetic accessibility of this organism combined with diverse tools for manipulation and analysis including electrophysiology and state of the art imaging, considerable progress has been made to characterize the role of glutamate receptors during the orchestration of junctional development, synaptic activity, and synaptogenesis. Following an introduction to basic features of this model system, we will mainly focus on conceptually important findings such as the selective impact of glutamate receptor subtypes on the formation of new synapses, the coordination of presynaptic maturation and receptor subtype composition, the role of nonvesicularly released glutamate on the synaptic localization of receptors, or the homeostatic feedback of receptor functionality on presynaptic transmitter release.


Assuntos
Drosophila melanogaster/fisiologia , Ácido Glutâmico/metabolismo , Junção Neuromuscular/fisiologia , Receptores de Glutamato/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
20.
Auris Nasus Larynx ; 49(1): 58-66, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34006406

RESUMO

OBJECTIVE: Hearing aid amplification rationales have typically been developed by using global averages of the long-term average speech spectrum (LTASS) from Western European languages. However, there are few reports on hearing-aid amplification based on acoustic-phonetic characteristics of the Japanese language. This study's objective is to investigate the LTASS for Japanese, and to compare a typical amplification rationale originally developed mainly for Western European languages with an amplification rationale specifically adjusted to the LTASS for Japanese. METHODS: LTASS for two speech materials provided by four Japanese talkers were analyzed using 1/3 octave bandwidth filters. The speech was recorded with different levels of vocal effort, yielding three LTASS for "soft", "moderate" and "loud" speech. From these results, a gain offset of the hearing-aid amplification for Japanese was obtained as compared to ANSI S3.5. Speech intelligibility for an amplification rationale for Western European languages and the newly-developed Japanese version was obtained for presentation levels of 50 dB SPL, 65 dB SPL and 80 dB SPL. Nineteen people with mild to moderate hearing loss participated in the speech intelligibility experiment. Scores in% correct were arcsine-transformed and subjected to repeated measures ANOVA with pairwise comparisons of significant main effects using Bonferroni adjustments for multiple comparisons. RESULTS: The LTASS for Japanese was slightly different from the values of previous reports. A comparison of LTASS values to ANSI S3.5 with values for Japanese showed that the Japanese amplification rationale for "moderate" speech levels required more gain in the low-frequency area, and less gain in the high-frequency area. There was no significant difference in the speech intelligibility level between the amplification characteristics of Western European languages and Japanese language at each presentation level. CONCLUSION: It was shown that for hearing-aid amplification for Japanese, adjustments based on LTASS differences for Western European Languages could be made. This preserved speech intelligibility at the same level as the original amplification rationale, suggesting that there was no need to consider differences in phonetics of Japanese to optimize speech understanding.


Assuntos
Auxiliares de Audição , Idioma , Acústica da Fala , Inteligibilidade da Fala , Idoso , Idoso de 80 Anos ou mais , Desenho de Equipamento , Feminino , Humanos , Japão , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA