Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
New Phytol ; 221(3): 1303-1316, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30216452

RESUMO

Diatom dominance in contemporary aquatic environments indicates that they have developed unique and effective mechanisms to cope with the rapid and considerable fluctuations that characterize these environments. In view of their evolutionary history from a secondary endosymbiosis, inter-organellar regulation of biochemical activities may be of particular relevance. Diatom mitochondrial alternative oxidase (AOX) is believed to play a significant role in supplying chloroplasts with ATP produced in the mitochondria. Using the model diatom Phaeodactylum tricornutum we generated AOX knockdown lines, and followed sensitivity to stressors, photosynthesis and transcriptome and metabolome profiles of wild-type and knockdown lines. We show here that expression of the AOX gene is upregulated by various stresses including H2 O2 , heat, high light illumination, and iron or nitrogen limitation. AOX knockdown results in hypersensitivity to stress. Knockdown lines also show significantly reduced photosynthetic rates and their chloroplasts are more oxidized. Comparisons of transcriptome and metabolome profiles suggest a strong impact of AOX activity on gene expression, which is carried through to the level of the metabolome. Our data provide evidence for the involvement of mitochondrial AOX in processes central to the cell biology of diatoms, revealing that cross-talk between mitochondria and chloroplasts is crucial for maintaining sensitivity to changing environments.


Assuntos
Organismos Aquáticos/enzimologia , Cloroplastos/metabolismo , Diatomáceas/enzimologia , Diatomáceas/fisiologia , Regulação para Baixo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo , Organismos Aquáticos/fisiologia , Glutationa/metabolismo , Metabolômica , Oxirredução , Fotossíntese , Transcriptoma/genética
2.
New Phytol ; 221(4): 1890-1905, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30288745

RESUMO

Chitin is generally considered to be present in centric diatoms but not in pennate species. Many aspects of chitin biosynthetic pathways have not been explored in diatoms. We retrieved chitin metabolic genes from pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom genomes. Chitin deacetylase (CDA) genes from each genome (PtCDA and TpCDA) were overexpressed in P. tricornutum. We performed comparative analysis of their sequence structure, phylogeny, transcriptional profiles, localization and enzymatic activities. The chitin relevant proteins show complex subcellular compartmentation. PtCDA was likely acquired by horizontal gene transfer from prokaryotes, whereas TpCDA has closer relationships with sequences in Opisthokonta. Using transgenic P. tricornutum lines expressing CDA-green fluorescent protein (GFP) fusion proteins, PtCDA predominantly localizes to Golgi apparatus whereas TpCDA localizes to endoplasmic reticulum/chloroplast endoplasmic reticulum membrane. CDA-GFP overexpression upregulated the transcription of chitin synthases and potentially enhanced the ability of chitin synthesis. Although both CDAs are active on GlcNAc5 , TpCDA is more active on the highly acetylated chitin polymer DA60. We have addressed the ambiguous characters of CDAs from P. tricornutum and T. pseudonana. Differences in localization, evolution, expression and activities provide explanations underlying the greater potential of centric diatoms for chitin biosynthesis. This study paves the way for in vitro applications of novel CDAs.


Assuntos
Amidoidrolases/genética , Amidoidrolases/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Amidoidrolases/química , Parede Celular/química , Parede Celular/metabolismo , Quitina/metabolismo , Quitosana/metabolismo , Diatomáceas/crescimento & desenvolvimento , Evolução Molecular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Organismos Geneticamente Modificados , Filogenia , Polissacarídeos/química , Polissacarídeos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
3.
J Cell Sci ; 129(7): 1441-54, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26906416

RESUMO

Cullin-RING ligases (CRL) are ubiquitin E3 enzymes that bind substrates through variable substrate receptor proteins and are activated by attachment of the ubiquitin-like protein NEDD8 to the cullin subunit. DCNs are NEDD8 E3 ligases that promote neddylation. Mammalian cells express five DCN-like (DCNL) proteins but little is known about their specific functions or interaction partners. We found that DCNLs form stable stoichiometric complexes with CAND1 and cullins that can only be neddylated in the presence of a substrate adaptor. These CAND-cullin-DCNL complexes might represent 'reserve' CRLs that can be rapidly activated when needed. We further found that all DCNLs interact with most cullin subtypes, but that they are probably responsible for the neddylation of different subpopulations of any given cullin. This is consistent with the fact that the subcellular localization of DCNLs in tissue culture cells differs and that they show unique tissue-specific expression patterns in mice. Thus, the specificity between DCNL-type NEDD8 E3 enzymes and their cullin substrates is only apparent in well-defined physiological contexts and related to their subcellular distribution and restricted expression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Oncogênicas/metabolismo , Peptídeo Sintases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Linhagem Celular , Proteínas Culina/metabolismo , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína NEDD8 , Ligação Proteica , Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética
4.
Nucleic Acids Res ; 43(9): 4517-30, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25855810

RESUMO

The DNA damage response is vigorously activated by DNA double-strand breaks (DSBs). The chief mobilizer of the DSB response is the ATM protein kinase. We discovered that the COP9 signalosome (CSN) is a crucial player in the DSB response and an ATM target. CSN is a protein complex that regulates the activity of cullin ring ubiquitin ligase (CRL) complexes by removing the ubiquitin-like protein, NEDD8, from their cullin scaffold. We find that the CSN is physically recruited to DSB sites in a neddylation-dependent manner, and is required for timely repair of DSBs, affecting the balance between the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair (HRR). The CSN is essential for the processivity of deep end-resection-the initial step in HRR. Cullin 4a (CUL4A) is recruited to DSB sites in a CSN- and neddylation-dependent manner, suggesting that CSN partners with CRL4 in this pathway. Furthermore, we found that ATM-mediated phosphorylation of CSN subunit 3 on S410 is critical for proper DSB repair, and that loss of this phosphorylation site alone is sufficient to cause a DDR deficiency phenotype in the mouse. This novel branch of the DSB response thus significantly affects genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Complexo do Signalossomo COP9 , Linhagem Celular , Células Cultivadas , Proteínas Culina/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo
5.
Biochem J ; 441(3): 927-36, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22004789

RESUMO

Ubiquitin and UBL (ubiquitin-like) modifiers are small proteins that covalently modify other proteins to alter their properties or behaviours. Ubiquitin modification (ubiquitylation) targets many substrates, often leading to their proteasomal degradation. NEDD8 (neural-precursor-cell-expressed developmentally down-regulated 8) is the UBL most closely related to ubiquitin, and its best-studied role is the activation of CRLs (cullin-RING ubiquitin ligases) by its conjugation to a conserved C-terminal lysine residue on cullin proteins. The attachment of UBLs requires three UBL-specific enzymes, termed E1, E2 and E3, which are usually well insulated from parallel UBL pathways. In the present study, we report a new mode of NEDD8 conjugation (NEDDylation) whereby the UBL NEDD8 is linked to proteins by ubiquitin enzymes in vivo. We found that this atypical NEDDylation is independent of classical NEDD8 enzymes, conserved from yeast to mammals, and triggered by an increase in the NEDD8 to ubiquitin ratio. In cells, NEDD8 overexpression leads to this type of NEDDylation by increasing the concentration of NEDD8, whereas proteasome inhibition has the same effect by depleting free ubiquitin. We show that bortezomib, a proteasome inhibitor used in cancer therapy, triggers atypical NEDDylation in tissue culture, which suggests that a similar process may occur in patients receiving this treatment.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Ubiquitinas/metabolismo , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células HeLa , Humanos , Proteína NEDD8 , Pirazinas/farmacologia , Transfecção , Ubiquitina/análise , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Ubiquitinas/análise , Ubiquitinas/genética
6.
PLoS One ; 13(6): e0199197, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29958295

RESUMO

The activity of Cullin-RING ubiquitin E3 ligases (CRL) is regulated by NEDD8 modification. DCN-like proteins promote Cullin neddylation as scaffold-like E3s. One DCNL, DCNL5, is highly expressed in immune tissue. Here, we provide evidence that DCNL5 may be involved in innate immunity, as it is a direct substrate of the kinase IKKα during immune signalling. We find that upon activation of Toll-like receptors, DCNL5 gets rapidly and transiently phosphorylated on a specific N-terminal serine residue (S41). This phosphorylation event is specifically mediated by IKKα and not IKKß. Our data for the first time provides evidence that DCNL proteins are post-translationally modified in an inducible manner. Our findings also provide the first example of a DCNL member as a kinase substrate in a signalling pathway, indicating that the activity of at least some DCNLs may be regulated.


Assuntos
Quinase I-kappa B/imunologia , Imunidade Inata , Proteínas Oncogênicas/imunologia , Peptídeo Sintases/imunologia , Transdução de Sinais/imunologia , Animais , Células HEK293 , Humanos , Quinase I-kappa B/genética , Camundongos , Proteína NEDD8/genética , Proteína NEDD8/imunologia , Proteínas Oncogênicas/genética , Peptídeo Sintases/genética , Fosforilação/genética , Fosforilação/imunologia , Células RAW 264.7 , Transdução de Sinais/genética
7.
Biol Open ; 7(7)2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012553

RESUMO

The Notch signalling pathway is a conserved and widespread signalling paradigm, and its misregulation has been implicated in numerous disorders, including cancer. The output of Notch signalling depends on the nuclear accumulation of the Notch receptor intracellular domain (ICD). Using the Caenorhabditis elegans germline, where GLP-1/Notch-mediated signalling is essential for maintaining stem cells, we monitored GLP-1 in vivo We found that the nuclear enrichment of GLP-1 ICD is dynamic: while the ICD is enriched in germ cell nuclei during larval development, it is depleted from the nuclei in adult germlines. We found that this pattern depends on the ubiquitin proteolytic system and the splicing machinery and, identified the splicing factor PRP-19 as a candidate E3 ubiquitin ligase required for the nuclear depletion of GLP-1 ICD.

8.
Mol Cell Oncol ; 3(5): e1199265, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857970

RESUMO

The mitotic kinase polo like kinase 1 (PLK1) is overexpressed in many cancers and its inhibition slows down proliferation and increases apoptosis in cancer cell lines. Understanding how PLK1 is activated is therefore crucial for the development of novel PLK1 inhibitors with anticancer properties. We recently identified a conserved regulatory loop leading to PLK1 activation that involves cyclin-dependent kinase 1 (CDK1).

9.
Cell Cycle ; 15(23): 3177-3182, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27831827

RESUMO

Polo-like kinase 1 (Plk1) is an important mitotic kinase that is crucial for entry into mitosis after recovery from DNA damage-induced cell cycle arrest. Plk1 activation is promoted by the conserved protein Bora (SPAT-1 in C. elegans), which stimulates the phosphorylation of a conserved residue in the activation loop by the Aurora A kinase. In a recent article published in Cell Reports, we show that the master mitotic kinase Cdk1 contributes to Plk1 activation through SPAT-1/Bora phosphorylation. We identified 3 conserved Sp/Tp residues that are located in the N-terminal, most conserved part, of SPAT-1/Bora. Phosphorylation of these sites by Cdk1 is essential for Plk1 function in mitotic entry in C. elegans embryos and during DNA damage checkpoint recovery in mammalian cells. Here, using an untargeted Förster Resonance Energy Transfer (FRET) biosensor to monitor Plk1 activation, we provide additional experimental evidence supporting the importance of these phosphorylation sites for Plk1 activation and subsequent mitotic entry after DNA damage. We also briefly discuss the mechanism of Plk1 activation and the potential role of Bora phosphorylation by Cdk1 in this process. As Plk1 is overexpressed in cancer cells and this correlates with poor prognosis, understanding how Bora contributes to Plk1 activation is paramount for the development of innovative therapeutical approaches.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pontos de Checagem do Ciclo Celular , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Fosforilação , Quinase 1 Polo-Like
10.
Cell Rep ; 15(3): 510-518, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27068477

RESUMO

The conserved Bora protein is a Plk1 activator, essential for checkpoint recovery after DNA damage in human cells. Here, we show that Bora interacts with Cyclin B and is phosphorylated by Cyclin B/Cdk1 at several sites. The first 225 amino acids of Bora, which contain two Cyclin binding sites and three conserved phosphorylated residues, are sufficient to promote Plk1 phosphorylation by Aurora A in vitro. Mutating the Cyclin binding sites or the three conserved phosphorylation sites abrogates the ability of the N terminus of Bora to promote Plk1 activation. In human cells, Bora-carrying mutations of the three conserved phosphorylation sites cannot sustain mitotic entry after DNA damage. In C. elegans embryos, mutation of the three conserved phosphorylation sites in SPAT-1, the Bora ortholog, results in a severe mitotic entry delay. Our results reveal a crucial and conserved role of phosphorylation of the N terminus of Bora for Plk1 activation and mitotic entry.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/química , Sequência Conservada , Ciclina B/metabolismo , Dano ao DNA , Embrião não Mamífero/citologia , Ativação Enzimática , Células HeLa , Humanos , Mitose , Fosforilação , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA