Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 241(0): 341-356, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36254834

RESUMO

Mechanochemical synthesis routes offer a sustainable, simple method for preparing materials. In this work, NiAl2O4 was synthesised by a mechanically activated method using a high-energy planetary mill and a calcination step. This study aims to identify the effect of different milling energies on the phases, chemical environments and surface composition of the material. In addition, it explores the thermal impact on the decomposition and structure of the materials. The materials were characterised by X-ray phosphorescence (XPS), solid-state UV-VIS (SS-UV-VIS), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), high-resolution transmission electron microscopy (HR-TEM) and thermal gravimetry differential scanning calorimetry (TGA-DSC). A co-precipitated material is used as a reference along with the ground reagents which were used as a baseline. From this in-depth analysis of the material, a good understanding of the disordered partially inverse spinel structure is provided. This study has found that with calcination temperatures of 750 °C and 900 °C a mixed NiAl2O4 : NiO phase is produced with a Ni enriched surface. The surface is found to be relatively stable with the increase from 750 °C to 900 °C.

2.
Phys Chem Chem Phys ; 24(4): 2387-2395, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019919

RESUMO

The effect of Pd loading on the redox characteristics of a ceria support was examined using in situ Pd K-edge XAS, Ce L3-edge XAS and in situ X-ray diffraction techniques. Analysis of the data obtained from these techniques indicates that the onset temperature for the partial reduction of Ce(IV) to Ce(III), by exposure to H2, varies inversely with the loading of Pd. Whilst the onset and completion temperatures of the reduction of Ce(IV) to Ce(III) are different, both samples yield the same maximal fraction of Ce(III) formation independent of Pd loading. Furthermore, the partial reduction of Ce is found to be concurrent with the reduction of PdO and demonstrated that the presence of metallic Pd is necessary for the reduction of the CeO2 support. Upon passivation by room temperature oxidation, a full oxidation of the reduced ceria support was observed. However, only a mild surface oxidation of Pd was identified. The mild passivation of the Pd is found to lead to a highly reactive sample upon a second reduction by H2. The onset of the reduction of Pd and Ce has been demonstrated to be independent of the Pd loading after a mild passivation with both samples exhibiting near room temperature reduction in the presence of H2.

3.
Inorg Chem ; 59(6): 3805-3816, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32091886

RESUMO

The synthesis of a new solid solution of the oxyhydroxide Ga5-xAlxO7(OH) is investigated via solvothermal reaction between gallium acetylacetonate and aluminum isopropoxide in 1,4-butanediol at 240 °C. A limited compositional range of 0 ≤ x ≤ 1.5 is produced, with the hexagonal unit cell parameters refined from powder X-ray diffraction (XRD) showing a linear contraction in unit cell volume with an increase in Al content. Solid-state 27Al and 71Ga nuclear magnetic resonance (NMR) spectroscopies show a strong preference for Ga to occupy the tetrahedral sites and Al to occupy the octahedral sites. Using isopropanol as the solvent, γ-Ga2-xAlxO3 defect spinel solid solutions with x ≤ 1.8 can be prepared at 240 °C in 24 h. These materials are nanocrystalline, as evidenced by their broad diffraction profiles; however, the refined cubic lattice parameter shows a linear relationship with the Ga:Al content, and solid-state NMR spectroscopy again shows a preference for Al to occupy the octahedral sites. Thermal decomposition of Ga5-xAlxO7(OH) occurs via poorly ordered materials that resemble ε-Ga2-xAlxO3 and κ-Ga2-xAlxO3, but γ-Ga2-xAlxO3 transforms above 750 °C to monoclinic ß-Ga2-xAlxO3 for 0 ≤ x ≤ 1.3 and to hexagonal α-Ga2-xAlxO3 for x = 1.8, with intermediate compositions of 1.3 < x < 1.8 giving mixtures of the α- and ß-polymorphs. Solid-state NMR spectroscopy shows only the expected octahedral Al for α-Ga2-xAlxO3, and for ß-Ga2-xAlxO3, the ∼1:2 tetrahedral:octahedral Al ratio is in good agreement with the results of Rietveld analysis of the average structures against powder XRD data. Relative energies calculated by periodic density functional theory confirm that there is an ∼5.2 kJ mol-1 penalty for tetrahedral rather than octahedral Al in Ga5-xAlxO7(OH), whereas this penalty is much smaller (∼2.0 kJ mol-1) for ß-Ga2-xAlxO3, in good qualitative agreement with the experimental NMR spectra.

4.
Phys Chem Chem Phys ; 22(42): 24784-24795, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33107513

RESUMO

Strain in Pt nanoalloys induced by the secondary metal has long been suggested as a major contributor to the modification of catalytic properties. Here, we investigate strain in PtCo nanoparticles using a combination of computational modelling and microscopy experiments. We have used a combination of molecular dynamics (MD) and large-scale density functional theory (DFT) for our models, alongside experimental work using annular dark field scanning transmission electron microscopy (ADF-STEM). We have performed extensive validation of the interatomic potential against DFT using a Pt568Co18 nanoparticle. Modelling gives access to 3 dimensional structures that can be compared to the 2D ADF-STEM images, which we use to build an understanding of nanoparticle structure and composition. Strain has been measured for PtCo and pure Pt nanoparticles, with MD annealed models compared to ADF-STEM images. Our analysis was performed on a layer by layer basis, where distinct trends between the Pt and PtCo alloy nanoparticles are observed. To our knowledge, we show for the first time a way in which detailed atomistic simulations can be used to augment and help interpret the results of ADF-STEM strain mapping experiments, which will enhance their use in characterisation towards the development of improved catalysts.

5.
Phys Chem Chem Phys ; 22(10): 5902-5914, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109268

RESUMO

We employ a combined density functional theory (DFT) and experimental approach to screen different elements (M) and Pt3M alloys (M = Sc, Y, V, Nb, Ta, Ti, Zr, Hf, Cr, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Cu, Ag, Au and Al) for oxygen reduction reaction (ORR) activity and stability. The results of the calculations are validated using a series of carbon supported alloy nanoparticles measured within membrane electrode assembly (MEA) environments. We assess the reliability of descriptors such as surface d-band centre and O adsorption energy as computed from DFT calculations. We also assess the stability of the alloy surfaces under different adsorbate environments as encountered under ORR conditions. Our calculations predict that under an oxygen atmosphere segregation of M to the surface is likely to occur. The calculated segregation energies correlate reasonably well with the amount of base metal leached in the carbon-supported catalysts and good correlation of computed O adsorption energies with ORR activity is also shown.

6.
J Chem Phys ; 151(11): 114702, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31542047

RESUMO

Metal oxide supports often play an active part in heterogeneous catalysis by moderating both the structure and the electronic properties of the metallic catalyst particle. In order to provide some fundamental understanding on these effects, we present here a density functional theory (DFT) investigation of the binding of O and CO on Pt nanoparticles supported on titania (anatase) surfaces. These systems are complex, and in order to develop realistic models, here, we needed to perform DFT calculations with up to ∼1000 atoms. By performing full geometry relaxations at each stage, we avoid any effects of "frozen geometry" approximations. In terms of the interaction of the Pt nanoparticles with the support, we find that the surface deformation of the anatase support contributes greatly to the adsorption of each nanoparticle, especially for the anatase (001) facet. We attempt to separate geometric and electronic effects and find a larger contribution to ligand binding energy arising from the former. Overall, we show an average weakening (compared to the isolated nanoparticle) of ∼0.1 eV across atop, bridge and hollow binding sites on supported Pt55 for O and CO, and a preservation of site preference. Stronger effects are seen for O on Pt13, which is heavily deformed by anatase supports. In order to rationalize our results and examine methods for faster characterization of metal catalysts, we make use of electronic descriptors, including the d-band center and an electronic density based descriptor. We expect that the approach followed in this study could be applied to study other supported metal catalysts.

7.
J Am Chem Soc ; 140(5): 1588-1591, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29350919

RESUMO

Partial substitution of Ce4+ by Nb5+ is possible in CeO2 by coinclusion of Na+ to balance the charge, via hydrothermal synthesis in sodium hydroxide solution. Pair distribution function analysis using reverse Monte Carlo refinement reveals that the small pentavalent substituent resides in irregular coordination positions in an average fluorite lattice, displaced away from the ideal cubic coordination toward four oxygens. This results in under-coordinated oxygen, which explains significantly enhanced oxygen storage capacity of the materials of relevance to redox catalysis used in energy and environmental applications.

8.
Inorg Chem ; 57(17): 11217-11224, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30106569

RESUMO

The rhodium(III) hydrogarnets Ca3Rh2(OH)12 and Sr3Rh2(OH)12 crystallize as polycrystalline powders under hydrothermal conditions at 200 °C from RhCl3·3H2O and either Ca(OH)2 or Sr(OH)2 in either 12 M NaOH or KOH. Rietveld refinements against synchrotron powder X-ray diffraction (XRD) data allow the first crystal structures of the two materials to be determined. If BaO2 is used as a reagent and the concentration of hydroxide increased to hydroflux conditions (excess NaOH), then single crystals of a new complex rhodium hydroxide, BaNaRh(OH)6, are formed in a phase-pure sample, with sodium included from the flux. Structure solution from single-crystal XRD data reveals isolated octahedral Rh centers that share hydroxides with 10-coordinate Ba and two independent 8-coordinate Na sites. 23Na magic-angle spinning NMR confirms the presence of the two crystallographically distinct Na sites and also verifies the diamagnetic nature of the sample, expected for Rh(III). The thermal behavior of the hydroxides on heating in air was investigated using X-ray thermodiffractometry, showing different decomposition pathways for each material. Ca3Rh2(OH)12 yields CaRh2O4 and CaO above 650 °C, from which phase-pure CaRh2O4 is isolated by washing with dilute nitric acid, a material previously only reported by high-pressure or high-temperature synthesis. Sr3Rh2(OH)12 decomposes to give a less crystalline material with a powder XRD pattern that is matched to the 2H-layered hexagonal perovskite Sr6Rh5O15, which contains mixed-valent Rh3+/4+, confirmed by Rh K-edge XANES spectroscopy. On heating BaNaRh(OH)6, a complex set of decomposition events takes place via transient phases.

9.
Chemphyschem ; 17(21): 3494-3503, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27569997

RESUMO

The structure of several nano-sized ceria, CeO2 , systems was investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce4+ and O2- are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano-sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributable to the particle size of the CeO2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L3 - and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size.

10.
J Chem Phys ; 145(22): 220901, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984887

RESUMO

Current research challenges in areas such as energy and bioscience have created a strong need for Density Functional Theory (DFT) calculations on metallic nanostructures of hundreds to thousands of atoms to provide understanding at the atomic level in technologically important processes such as catalysis and magnetic materials. Linear-scaling DFT methods for calculations with thousands of atoms on insulators are now reaching a level of maturity. However such methods are not applicable to metals, where the continuum of states through the chemical potential and their partial occupancies provide significant hurdles which have yet to be fully overcome. Within this perspective we outline the theory of DFT calculations on metallic systems with a focus on methods for large-scale calculations, as required for the study of metallic nanoparticles. We present early approaches for electronic energy minimization in metallic systems as well as approaches which can impose partial state occupancies from a thermal distribution without access to the electronic Hamiltonian eigenvalues, such as the classes of Fermi operator expansions and integral expansions. We then focus on the significant progress which has been made in the last decade with developments which promise to better tackle the length-scale problem in metals. We discuss the challenges presented by each method, the likely future directions that could be followed and whether an accurate linear-scaling DFT method for metals is in sight.

11.
Phys Chem Chem Phys ; 16(20): 9432-40, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24722871

RESUMO

The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 °C and 60 °C, using variable temperature electrochemical in situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 °C to 60 °C facilitates both ethanol dissociation to CO(a) and then further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found upon modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in situ FTIR and DFT study provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.

12.
Angew Chem Int Ed Engl ; 53(17): 4423-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24644102

RESUMO

Low-temperature (200 °C) hydrothermal synthesis of the ruthenium oxides Ca1.5 Ru2 O7 , SrRu2 O6 , and Ba2 Ru3 O9 (OH) is reported. Ca1.5 Ru2 O7 is a defective pyrochlore containing Ru(V/VI) ; SrRu2 O6 is a layered Ru(V) oxide with a PbSb2 O6 structure, whilst Ba2 Ru3 O9 (OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu2 O6 exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500 K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 °C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions.

13.
Phys Chem Chem Phys ; 15(40): 17195-207, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24013445

RESUMO

This study demonstrates the utility of the novel Field Sweep Fourier Transform (FSFT) method for acquiring wideline (195)Pt NMR data from various sized Pt nanoparticles, Pt-Sn intermetallics/bimetallics used to catalyse oxidative processes in fuel cell applications, and various other related Pt3X alloys (X = Al, Sc, Nb, Ti, Hf and Zr) which can facilitate oxygen reduction catalysis. The (195)Pt and (119)Sn NMR lineshapes measured from the PtSn intermetallic and Pt3Sn bimetallic systems suggest that these are more ordered than other closely related bimetallic alloys; this observation is supported by other characterisation techniques such as XRD. From these reconstructed spectra the mean number of atoms in a Pt nanoparticle can be accurately determined, along with detailed information regarding the number of atoms present effectively in each layer from the surface. This can be compared with theoretical predictions of the number of Pt atoms in these various layers for cubo-octahedral nanoparticles, thereby providing an estimate of the particle size. A comparison of the common NMR techniques used to acquire wideline data from the I = 1/2 (195)Pt nucleus illustrates the advantages of the automated FSFT technique over the Spin Echo Height Spectroscopy (SEHS) (or Spin Echo Integration Spectroscopy (SEIS)) approach that dominates the literature in this area of study. This work also presents the first (195)Pt NMR characterisation of novel small Pt13 nanoclusters which are diamagnetic and thus devoid of metallic character. This unique system provides a direct measure of an isotropic chemical shift for these Pt nanoparticles and affords a better basis for determining the actual Knight shift when compared to referencing against the primary IUPAC shift standard (1.2 M Na2PtCl6(aq)) which has a very different local chemical environment.

14.
Chem Sci ; 14(44): 12621-12636, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38020362

RESUMO

Oxygen storage and release is a foundational part of many key pathways in heterogeneous catalysis, such as the Mars-van Krevelen mechanism. However, direct measurement of oxygen storage capacity (OSC) is time-consuming and difficult to parallelise. To accelerate the discovery of stable high OSC rare-earth doped ceria-zirconia oxygen storage catalysts, a high-throughput robotic-based co-precipitation synthesis route was coupled with sequentially automated powder X-ray diffraction (PXRD), Raman and thermogravimetric analysis (TGA) characterisation of the resulting materials libraries. Automated extraction of data enabled rapid trend identification and provided a data set for the development of an OSC prediction model, investigating the significance of each extracted quantity towards OSC. The optimal OSC prediction model produced incorporated variables from only fast-to-measure analytical techniques and gave predicted values of OSC that agreed with experimental observations across an independent validation set. Those measured quantities that feature in the model emerge as proxies for OSC performance. The ability to predict the OSC of the materials accelerates the discovery of high-capacity oxygen storage materials and motivates the development of similar high-throughput workflows to identify candidate catalysts for other heterogeneous transformations.

15.
J Am Chem Soc ; 134(11): 5036-9, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22397308

RESUMO

When materials are reduced to the nanoscale, their structure and reactivity can deviate greatly from the bulk or extended surface case. Using the archetypal example of supported Pt nanoparticles (ca. 2 nm diameter, 1 wt % Pt on Al(2)O(3)) catalyzing CO oxidation to CO(2) during cyclic redox operation, we show that high energy X-ray total scattering, used with subsecond time resolution, can yield detailed, valuable insights into the dynamic behavior of nanoscale systems. This approach reveals how these nanoparticles respond to their environment and the nature of active sites being formed and consumed within the catalytic process. Specific insight is gained into the structure of the highly active Pt surface oxide that formed on the nanoparticles during catalysis.

16.
ChemistryOpen ; 11(9): e202200186, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36101494

RESUMO

Cu2+ ions (ZCu2+ (OH)- , Z2 Cu2+ ) are regarded as the NH3 -SCR (SCR=selective catalytic reduction) active site precursors of Cu-exchanged chabazite (CHA) which is among the best available catalysts for the abatement of NOx from Diesel engines. During SCR operation, copper sites undergo reduction (Reduction half-cycle, RHC: Cu2+ →Cu+ ) and oxidation (Oxidaton half-cycle, OHC: Cu+ →Cu2+ ) semi cycles, whose associated mechanisms are still debated. We recently proposed CO oxidation to CO2 as an effective method to probe the formation of multinuclear Cu2+ species as the initial low-T RHC step. NH3 pre-adsorption determined a net positive effect on the CO2 production: by solvating ZCu2+ (OH)- ions, ammonia enhances their mobility, favoring their coupling to form binuclear complexes which can catalyze the reaction. In this work, dry CO oxidation experiments, preceded by modulated NH3 feed phases, clearly showed that CO2 production enhancements are correlated with the extent of Cu2+ ion solvation by NH3 . Analogies with the SCR-RHC phase are evidenced: the NH3 -Cu2+ presence ensures the characteristic dynamics associated with a second order kinetic dependence on the oxidized Cu2+ fraction. These findings provide novel information on the NH3 role in the low-T SCR redox mechanism and on the nature of the related active catalyst sites.

17.
Dalton Trans ; 49(42): 14871-14880, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073797

RESUMO

The cerium(iii) hydroxide chloride Ce(OH)2Cl crystallises directly as a polycrystalline powder from a solution of CeCl3·7H2O in poly(ethylene) glycol (Mn = 400) heated at 240 °C and is found to be isostructural with La(OH)2Cl, as determined from high-resolution synchrotron powder X-ray diffraction (P21/m, a = 6.2868(2) Å, b = 3.94950(3) Å, c = 6.8740(3) Å, ß = 113.5120(5)°). Replacement of a proportion of the cerium chloride in synthesis by a second lanthanide chloride yields a set of materials Ce1-xLnx(OH)2Cl for Ln = La, Pr, Gd, Tb. For La the maximum value of x is 0.2, with an isotropic expansion of the unit cell, but for the other lanthanides a wider composition range is possible, and the lattice parameters show an isotropic contraction with increasing x. Thermal decomposition of the hydroxide chlorides at 700 °C yields mixed-oxides Ce1-xLnxO2-δ that all have cubic fluorite structures with either expanded (Ln = La, Gd) or contracted (Ln = Pr, Tb) unit cells compared to CeO2. Scanning electron microscopy shows a shape memory effect in crystal morphology upon decomposition, with clusters of anisotropic sub-micron crystallites being seen in the precursor and oxide products. The Pr- and Tb-substituted oxides contain the substituent in a mixture of +3 and +4 oxidation states, as seen by X-ray absorption near edge structure spectroscopy at the lanthanide LIII edges. The mixed oxide materials are examined using temperature programmed reduction in 10%H2 in N2, which reveals redox properties suitable for heterogeneous catalysis, with the Pr-substituted materials showing the greatest reducibility at lower temperature.

18.
Dalton Trans ; 47(29): 9693-9700, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29978169

RESUMO

Hydrothermal crystallisation of CeO2 from aqueous sodium hydroxide solution at 240 °C using CeCl3·7H2O in the presence of hydrogen peroxide with addition of either SbCl3 or SbCl5 yields polycrystalline samples of antimony-containing ceria directly from solution. Powder X-ray diffraction shows a contraction of the cubic lattice parameter with increasing Sb content, and also a broadening of Bragg peaks, from which Scherrer analysis yields crystallite domain sizes of 5-20 nm. Scanning transmission electron microscopy provides consistent results with observation of highly crystalline particles of a few nm in diameter. X-ray absorption near edge structure spectroscopy at the Ce LIII- and Sb K-edges reveals the presence of Ce4+ and Sb5+ in the solids. To balance charge the presence of co-included Na is proposed, corroborated by elemental analysis. The general chemical formula of the materials can thus be written as (Ce1-xSbx)1-yNayO2-δ (where x < 0.4 and y ≥ x/3). Sb K-edge extended X-ray absorption fine structure spectroscopy of the substituted ceria samples shows that the local structure of Sb resembles that in NaSbO3, where six-coordinate metal sites are found, but with evidence of a longer interatomic correlation due to surrounding Ce/Sb atoms in the fluorite structure; this implies that the Sb is displaced from the ideal eight-coordinate site of the fluorite structure. This structural distortion gives materials that are unstable under reducing conditions, coupled by the ease of reduction to elemental antimony, which is extruded leading to phase separation.

19.
J Phys Condens Matter ; 30(15): 155301, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29480809

RESUMO

Platinum nanoparticles find significant use as catalysts in industrial applications such as fuel cells. Research into their design has focussed heavily on nanoparticle size and shape as they greatly influence activity. Using high throughput, high precision electron microscopy, the structures of commercially available Pt catalysts have been determined, and we have used classical and quantum atomistic simulations to examine and compare them with geometric cuboctahedral and truncated octahedral structures. A simulated annealing procedure was used both to explore the potential energy surface at different temperatures, and also to assess the effect on catalytic activity that annealing would have on nanoparticles with different geometries and sizes. The differences in response to annealing between the real and geometric nanoparticles are discussed in terms of thermal stability, coordination number and the proportion of optimal binding sites on the surface of the nanoparticles. We find that annealing both experimental and geometric nanoparticles results in structures that appear similar in shape and predicted activity, using oxygen adsorption as a measure. Annealing is predicted to increase the catalytic activity in all cases except the truncated octahedra, where it has the opposite effect. As our simulations have been performed with a classical force field, we also assess its suitability to describe the potential energy of such nanoparticles by comparing with large scale density functional theory calculations.

20.
J Phys Chem B ; 110(17): 8540-3, 2006 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-16640402

RESUMO

New "Pt-in-CeO(2)" catalyst prepared by microemulsion method is shown to give higher activity for a water-gas shift reaction but with no formation of CH(4), the side product from hydrogenation of carbon oxides using a hydrogen-rich reformate as compared to conventional "Pt-on-CeO(2)" catalysts. Detailed characterization by DRIFT analysis and temperature programmed reduction presented in this work clearly suggest the ceria coverage on Pt inhibits the metal from forming a strong CO adsorption.


Assuntos
Cério/química , Platina/química , Dióxido de Carbono/síntese química , Monóxido de Carbono/química , Catálise , Emulsões/química , Hidrogênio/química , Propriedades de Superfície , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA