Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharmacol ; 82(1): 68-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496518

RESUMO

Selective peroxisome proliferator-activated receptor γ (PPARγ) modulators (SPPARγMs) have been actively pursued as the next generation of insulin-sensitizing antidiabetic drugs, because the currently marketed PPARγ full agonists, pioglitazone and rosiglitazone, have been reported to produce serious adverse effects among patients with type 2 diabetes mellitus. We conducted extensive transcriptome profiling studies to characterize and to contrast the activities of 70 SPPARγMs and seven PPARγ full agonists. In both 3T3-L1 adipocytes and adipose tissue from db/db mice, the SPPARγMs generated attenuated and selective gene-regulatory responses, in comparison with full agonists. More importantly, SPPARγMs regulated the expression of antidiabetic efficacy-associated genes to a greater extent than that of adverse effect-associated genes, whereas PPARγ full agonists regulated both gene sets proportionally. Such SPPARγM selectivity demonstrates that PPARγ ligand regulation of gene expression can be fine-tuned, and not just turned on and off, to achieve precise control of complex cellular and physiological functions. It also provides a potential molecular basis for the superior therapeutic window previously observed with SPPARγMs versus full agonists. On the basis of our profiling results, we introduce two novel, gene expression-based scores, the γ activation index and the selectivity index, to aid in the detection and characterization of novel SPPARγMs. These studies provide new insights into the gene-regulatory activity of SPPARγMs as well as novel quantitative indices to facilitate the identification of PPARγ ligands with robust insulin-sensitizing activity and improved tolerance among patients with type 2 diabetes, compared with presently available PPARγ agonist drugs.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , PPAR gama/agonistas , PPAR gama/metabolismo , Transcriptoma/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células COS , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Perfilação da Expressão Gênica/métodos , Resistência à Insulina/genética , Ligantes , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos
2.
Mol Endocrinol ; 17(4): 662-76, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12554792

RESUMO

Antidiabetic thiazolidinediones (TZDs) and non-TZD compounds have been shown to serve as agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma). Here, we report the identification and characterization of a novel non-TZD selective PPARgamma modulator (nTZDpa). nTZDpa bound potently to PPARgamma with high selectivity vs. PPARalpha or PPARdelta. In cell-based assays for transcriptional activation, nTZDpa served as a selective, potent PPARgamma partial agonist and was able to antagonize the activity of PPARgamma full agonists. nTZDpa also displayed partial agonist effects when its ability to promote adipogenesis in 3T3-L1 cells was evaluated. Assessment of protein conformation using protease protection or solution nuclear magnetic resonance spectroscopy methods showed that nTZDpa produced altered PPARgamma conformational stability vs. full agonists, thereby establishing a physical basis for its observed partial agonism. DNA microarray analysis of RNA from 3T3-L1 adipocytes treated with nTZDpa or several structurally diverse PPARgamma full agonists demonstrated qualitative differences in the affected gene expression profile for nTZDpa. Chronic treatment of fat-fed, C57BL/6J mice with nTZDpa or a TZD full agonist ameliorated hyperglycemia and hyperinsulinemia. However, unlike the TZD, nTZDpa caused reductions in weight gain and adipose depot size. Feed efficiency was also substantially diminished. Unlike TZDs, nTZDpa did not cause cardiac hypertrophy in mice. When a panel of PPARgamma target genes was examined in white adipose tissue, nTZDpa produced a different in vivo expression pattern vs. the full agonist. These findings establish that novel selective PPARgamma modulators can produce altered receptor conformational stability leading to distinctive gene expression profiles, reduced adipogenic cellular effects, and potentially improved in vivo biological responses. Such compounds may lead to preferred therapies for diabetes, obesity, or metabolic syndrome.


Assuntos
Indóis/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/química , Sulfetos/farmacologia , Fatores de Transcrição/agonistas , Fatores de Transcrição/química , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Tecido Adiposo/efeitos dos fármacos , Animais , Cardiomegalia/induzido quimicamente , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Resistência à Insulina , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Conformação Proteica , Aumento de Peso/efeitos dos fármacos
3.
Cell Biol Int ; 31(6): 586-91, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17240171

RESUMO

alpha1-Acid glycoprotein (alpha1-AGP) is an acute phase protein that can potentiate cytokine secretion by mononuclear cells and may induce thrombosis by stabilizing the inhibitory activity of plasminogen activator inhibitor-1. Thus, alpha1-AGP may promote pathobiologies associated with type 2 diabetes mellitus (T2DM) including insulin resistance and cardiovascular disease. Here, we demonstrate that antidiabetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists inhibited expression of 3T3-L1 adipocyte alpha1-AGP in a concentration- and time-dependent manner via an apparent PPARgamma-mediated mechanism. As a result, synthesis and secretion of the glycoprotein was reduced. While PPARgamma agonist regulation of genes with functional peroxisome proliferator response elements in their promoter such as phosphoenolpyruvate carboxykinase were unaffected when cellular protein synthesis was inhibited, downregulation of alpha1-AGP mRNA was ablated thereby supporting the proposition that PPARgamma activation inhibits alpha1-AGP expression indirectly. These results suggest a potential novel adipocytic mechanism by which PPARgamma agonists may ameliorate T2DM-associated insulin resistance and cardiovascular disease.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Orosomucoide/biossíntese , Orosomucoide/genética , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Células 3T3-L1 , Animais , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Orosomucoide/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosiglitazona , Fatores de Tempo
4.
Anal Biochem ; 330(1): 21-8, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15183757

RESUMO

A novel class of insulin-sensitizing agents, the thiazolidinedines (TZDs), has proven effective in the treatment of type 2 diabetes. These compounds, as well as a subclass of non-TZD insulin-sensitizing agents, have been shown to be peroxisome proliferator-activated receptor (PPAR) gamma agonists. PPARgamma plays a critical role in adipogenesis and PPARgamma agonists have been shown to induce adipocyte differentiation. Here, PPARgamma ligand activity has been assessed in murine 3T3-L1 cells, a commonly used in vitro model of adipogenesis, by measuring their ability to induce adipocyte fatty acid-binding protein (aP2) mRNA expression. In order to perform this task, we have developed a novel, multiwell assay for the direct detection of aP2 mRNA in cell lysates that is based on hybridization of mRNA to target-specific oligonucleotides. These oligonucleotide probes are conjugated to enzymes that efficiently process unique chemical substrates into robust fluorescent products. Ribosomal protein 36B4 mRNA, a gene whose expression is unaffected by adipogenesis, serves as the control in the assay. Two assay formats have been developed, a single analyte assay in which aP2 and 36B4 mRNA expression are assayed in separate lysate aliquots and a dual analyte assay which can measure aP2 and 36B4 mRNA simultaneously. Both forms of the assay have been used to quantify attomole levels of aP2 and 36B4 mRNAs in differentiating 3T3-L1 preadipocytes treated with PPARgamma agonists. The potencies of PPARgamma agonists determined by this novel methodology showed good correlation with those derived from aP2 mRNA slot-blot analysis and PPARgamma transactivation assays. We conclude that the aP2 single and dual analyte assays both provide specific and sensitive measurements of endogenous aP2 mRNA levels that can be used to assess the activity of PPARgamma ligands in 3T3-L1 cells. Since the assay obviates the need for RNA isolation and is performed in an automatable multiwell format, it can serve as a high-throughput, cell-based screen for the identification and characterization of PPARgamma modulators.


Assuntos
Proteínas de Transporte/genética , Hibridização de Ácido Nucleico/métodos , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Proteínas Ribossômicas/genética , Tiazolidinedionas/farmacologia , Células 3T3-L1 , Adipócitos/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Sondas de DNA , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Ligação a Ácido Graxo , Camundongos , RNA Mensageiro/biossíntese , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA