Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 412(2): 191-207, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26953187

RESUMO

The development of the single cell layer skin or hypodermis of Caenorhabditis elegans is an excellent model for understanding cell fate specification and differentiation. Early in C. elegans embryogenesis, six rows of hypodermal cells adopt dorsal, lateral or ventral fates that go on to display distinct behaviors during larval life. Several transcription factors are known that function in specifying these major hypodermal cell fates, but our knowledge of the specification of these cell types is sparse, particularly in the case of the ventral hypodermal cells, which become Vulval Precursor Cells and form the vulval opening in response to extracellular signals. Previously, the gene pvl-4 was identified in a screen for mutants with defects in vulval development. We found by whole genome sequencing that pvl-4 is the Paired-box gene pax-3, which encodes the sole PAX-3 transcription factor homolog in C. elegans. pax-3 mutants show embryonic and larval lethality, and body morphology abnormalities indicative of hypodermal cell defects. We report that pax-3 is expressed in ventral P cells and their descendants during embryogenesis and early larval stages, and that in pax-3 reduction-of-function animals the ventral P cells undergo a cell fate transformation and express several markers of the lateral seam cell fate. Furthermore, forced expression of pax-3 in the lateral hypodermal cells causes them to lose expression of seam cell markers. We propose that pax-3 functions in the ventral hypodermal cells to prevent these cells from adopting the lateral seam cell fate. pax-3 represents the first gene required for specification solely of the ventral hypodermal fate in C. elegans providing insights into cell type diversification.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem da Célula/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Células Epidérmicas , Epiderme/embriologia , Feminino , Larva/citologia , Larva/genética , Larva/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Fatores de Transcrição Box Pareados/genética , Interferência de RNA , Vulva/citologia , Vulva/embriologia , Vulva/metabolismo
2.
Development ; 140(10): 2093-102, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23633508

RESUMO

The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Wnt/metabolismo , Alelos , Animais , Diferenciação Celular , Linhagem da Célula , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais
3.
Carcinogenesis ; 35(10): 2183-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24876151

RESUMO

Flavonoids have been extensively studied and are well documented to have anticancer effects, but it is not entirely known how they impact cellular mechanisms to elicit these effects. In the course of this study, we found that a variety of different flavonoids readily restored Brahma (BRM) in BRM-deficient cancer cell lines. Flavonoids from each of the six different structural groups were effective at inducing BRM expression as well as inhibiting growth in these BRM-deficient cancer cells. By blocking the induction of BRM with shRNA, we found that flavonoid-induced growth inhibition was BRM dependent. We also found that flavonoids can restore BRM functionality by reversing BRM acetylation. In addition, we observed that an array of natural flavonoid-containing products both induced BRM expression as well as deacetylated the BRM protein. We also tested two of the BRM-inducing flavonoids (Rutin and Diosmin) at both a low and a high dose on the development of tumors in an established murine lung cancer model. We found that these flavonoids effectively blocked development of adenomas in the lungs of wild-type mice but not in that of BRMnull mice. These data demonstrate that BRM expression and function are regulated by flavonoids and that functional BRM appears to be a prerequisite for the anticancer effects of flavonoids both in vitro and in vivo.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Flavonoides/farmacologia , Fatores de Transcrição/metabolismo , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Flavonoides/química , Humanos , Camundongos , Camundongos Mutantes , Terapia de Alvo Molecular , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno , Proteína do Retinoblastoma/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Fatores de Transcrição/genética
4.
Methods Mol Biol ; 2829: 49-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951326

RESUMO

This chapter outlines the workflow using the ExpiSf™ Expression System designed for high-density infection of suspension ExpiSf9™ cells. The system utilizes a chemically defined, serum-free, protein-free, and animal origin free medium, making it suitable for recombinant protein expression experiments. The ExpiSf™ chemically defined medium allows efficient transfection and baculovirus production directly within the same culture medium. The ExpiSf™ Expression System Starter Kit provides all necessary components, including cells, culture medium, and reagents needed to infect one (1) liter of cell culture. The system's versatility and animal origin free nature make it a valuable tool for various protein expression studies and biotechnological applications.


Assuntos
Baculoviridae , Proteínas Recombinantes , Fluxo de Trabalho , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Baculoviridae/genética , Transfecção/métodos , Meios de Cultura/química , Técnicas de Cultura de Células/métodos , Linhagem Celular , Expressão Gênica
5.
Methods Mol Biol ; 2829: 271-275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951343

RESUMO

This chapter outlines a rapid detection method to determine the virus titer of your baculovirus stock. Staining of cells with fluorescently labeled gp64 antibody allows for flow cytometer-based quantitation of baculovirus-infected insect cells. In this assay, Sf9 cells are infected with tenfold serial dilutions of the test virus stock, and baculovirus titers are calculated based on the ratio of infected to uninfected cells 13 to 18 h after inoculation.


Assuntos
Baculoviridae , Citometria de Fluxo , Citometria de Fluxo/métodos , Baculoviridae/genética , Animais , Células Sf9 , Carga Viral/métodos
6.
Methods Mol Biol ; 2829: 67-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951327

RESUMO

This chapter outlines the use of TOPO cloning for streamlined generation of a recombinant plasmid containing your gene of interest for use in the Bac-to-Bac™ Baculovirus Expression System.


Assuntos
Clonagem Molecular , Plasmídeos , Plasmídeos/genética , Clonagem Molecular/métodos , Vetores Genéticos/genética , Baculoviridae/genética , Cromossomos Artificiais Bacterianos/genética
7.
Oncoscience ; 2(4): 349-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097869

RESUMO

Once the knockout of the Brm gene was found to be nontumorigenic in mice, the study of BRM's involvement in cancer seemed less important compared with that of its homolog, Brg1. This has likely contributed to the disparity that has been observed in the publication ratio between BRG1 and BRM. We show that a previously published Brm knockout mouse is an incomplete knockout whereby a truncated isoform of Brm is detected in normal tissue and in tumors. We show that this truncated Brm isoform has functionality comparable to wild type Brm. By immunohistochemistry (IHC), this truncated Brm is undetectable in normal lung tissue and is minimal to very low in Brmnull tumors. However, it is significant in a subset (~40%) of Brg1/Brm double knockout (DKO) tumors that robustly express this truncated BRM, which in part stems from an increase in Brm mRNA levels. Thus, it is likely that this mutant mouse model does not accurately reflect the role that Brm plays in cancer development. We suggest that the construction of a completely new mouse Brm knockout, where Brm is functionally absent, is needed to determine whether or not Brm is actually tumorigenic and if Brm might be a tumor suppressor.

8.
J Addict Med ; 9(1): 53-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25469651

RESUMO

OBJECTIVES: There is growing evidence for a neuroadaptive model underlying vulnerability to relapse in opioid dependence. The purpose of this study was to evaluate clinical measures hypothesized to mirror elements of allostatic dysregulation in patients dependent on prescription opioids at 2 time points after withdrawal, compared with healthy control participants. METHODS: Recently withdrawn (n = 7) prescription opioid-dependent patients were compared with the patients in supervised residential care for 2 to 3 months (extended care; n = 7) and healthy controls (n = 7) using drug cue reactivity, affect-modulated startle response tasks, salivary cortisol, and 8 days of sleep actigraphy. Prefrontal cortex was monitored with functional near-infrared spectroscopy during the cue reactivity task. RESULTS: Startle response results indicated reduced hedonic response to natural rewards among patients recently withdrawn from opioids relative to extended care patients. The recently withdrawn patients showed increased activation to pill stimuli in right dorsolateral prefrontal cortex relative to extended care patients. Cortisol levels were elevated among recently withdrawn patients and intermediate for extended care relative to healthy controls. Actigraphy indicated disturbed sleep between recently withdrawn patients and extended care patients; extended care patients were similar to controls. Dorsolateral prefrontal cortex activation to drug and natural reward cues, startle responses to natural reward cues, day-time cortisol levels, time in bed, and total time spent sleeping were all correlated with the number of days since last drug use (ie, time in supervised residential treatment). CONCLUSIONS: These results suggest possible re-regulation of dysregulated hypothalamic-pituitary-adrenal axis and brain reward systems in prescription opioid-dependent patients over the drug-free period in residential treatment.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/reabilitação , Sistema Hipófise-Suprarrenal/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Recompensa , Actigrafia , Adulto , Estudos de Casos e Controles , Sinais (Psicologia) , Feminino , Neuroimagem Funcional , Humanos , Hidrocortisona/metabolismo , Masculino , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/psicologia , Reflexo de Sobressalto/fisiologia , Saliva/metabolismo , Sono/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo , Adulto Jovem
9.
Front Oncol ; 4: 372, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25774356

RESUMO

UNLABELLED: SWI/SNF is a major regulator of gene expression. Its role is to facilitate the shifting and exposure of DNA segments within the promoter and other key domains to transcription factors and other essential cellular proteins. This complex interacts with a wide range of proteins and does not function within a single, specific pathway; thus, it is involved in a multitude of cellular processes, including DNA repair, differentiation, development, cell adhesion, and growth control. Given SWI/SNF's prominent role in these processes, many of which are important for blocking cancer development, it is not surprising that the SWI/SNF complex is targeted during cancer initiation and progression both by mutations and by non-mutational mechanisms. Currently, the understanding of the types of alterations, their frequency, and their impact on the SWI/SNF subunits is an area of intense research that has been bolstered by a recent cadre of NextGen sequencing studies. These studies have revealed mutations in SWI/SNF subunits, indicating that this complex is thus important for cancer development. The purpose of this review is to put into perspective the role of mutations versus other mechanisms in the silencing of SWI/SNF subunits, in particular, BRG1 and BRM. In addition, this review explores the recent development of synthetic lethality and how it applies to this complex, as well as how BRM polymorphisms are becoming recognized as potential clinical biomarkers for cancer risk. SIGNIFICANCE: Recent reviews have detailed the occurrence of mutations in nearly all SWI/SNF subunits, which indicates that this complex is an important target for cancer. However, when the frequency of mutations in a given tumor type is compared to the frequency of subunit loss, it becomes clear that other non-mutational mechanisms must play a role in the inactivation of SWI/SNF subunits. Such data indicate that epigenetic mechanisms that are known to regulate BRM may also be involved in the loss of expression of other SWI/SNF subunits. This is important since epigenetically silenced genes are inducible, and thus, the reversal of the silencing of these non-mutationally suppressed subunits may be a viable mode of targeted therapy.

10.
Mech Ageing Dev ; 143-144: 9-18, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25437839

RESUMO

Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1-C24:1), gangliosides (e.g., GM1-C24:1), and sphingomyelins (e.g., dC18:1-C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides.


Assuntos
Envelhecimento/genética , Sobrevivência Celular/genética , Longevidade/genética , Esfingolipídeos , Animais , Caenorhabditis elegans , Comunicação Celular , Diferenciação Celular , Ceramidas/metabolismo , Gangliosídeos/metabolismo , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/metabolismo , Transdução de Sinais , Esfingolipídeos/genética , Esfingolipídeos/metabolismo
11.
Oncotarget ; 5(10): 3316-32, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24913006

RESUMO

Rhabdoid sarcomas are highly malignant tumors that usually occur in young children. A key to the genesis of this tumor is the mutational loss of the BAF47 gene as well as the widespread epigenetic suppression of other key anticancer genes. The BRM gene is one such epigenetically silenced gene in Rhabdoid tumors. This gene codes for an ATPase catalytic subunit that shifts histones and opens the chromatin. We show that BRM is an epigenetically silenced gene in 10/11 Rhabdoid cell lines and in 70% of Rhabdoid tumors. Moreover, BRM can be induced by BAF47 re-expression and by Flavopiridol. By selective shRNAi knockdown of BRM, we show that BRM re-expression is necessary for growth inhibition by BAF47 re-expression or Flavopiridol application. Similar to lung cancer cell lines, we found that HDAC3, HDAC9, MEF2D and GATA3 controlled BRM silencing and that HDAC9 was overexpressed in Rhabdoid cancer cell lines. In primary BRM-deficient Rhabdoid tumors, HDAC9 was also found to be highly overexpressed. Two insertional BRM promoter polymorphisms contribute to BRM silencing, but only the -1321 polymorphism correlated with BRM silencing in Rhabdoid cell lines. To determine how these polymorphisms were tied to BRM silencing, we conducted ChIP assays and found that both HDAC9 and MEF2D bound to the BRM promoter at or near these polymorphic sites. Using BRM promoter swap experiments, we indirectly showed that both HDAC9 and MEF2D bound to these polymorphic sites. Together, these data show that the mechanism of BRM silencing contributes to the pathogenesis of Rhabdoid tumors and appears to be conserved among tumor types.


Assuntos
Proteínas Cromossômicas não Histona/genética , Inativação Gênica/fisiologia , Tumor Rabdoide/genética , Fatores de Transcrição/genética , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA