Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(40): e2318098121, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39331414

RESUMO

Huntington disease (HD) is a genetic neurodegenerative disease caused by cytosine, adenine, guanine (CAG) expansion in the Huntingtin (HTT) gene, translating to an expanded polyglutamine tract in the HTT protein. Age at disease onset correlates to CAG repeat length but varies by decades between individuals with identical repeat lengths. Genome-wide association studies link HD modification to DNA repair and mitochondrial health pathways. Clinical studies show elevated DNA damage in HD, even at the premanifest stage. A major DNA repair node influencing neurodegenerative disease is the PARP pathway. Accumulation of poly adenosine diphosphate (ADP)-ribose (PAR) has been implicated in Alzheimer and Parkinson diseases, as well as cerebellar ataxia. We report that HD mutation carriers have lower cerebrospinal fluid PAR levels than healthy controls, starting at the premanifest stage. Human HD induced pluripotent stem cell-derived neurons and patient-derived fibroblasts have diminished PAR response in the context of elevated DNA damage. We have defined a PAR-binding motif in HTT, detected HTT complexed with PARylated proteins in human cells during stress, and localized HTT to mitotic chromosomes upon inhibition of PAR degradation. Direct HTT PAR binding was measured by fluorescence polarization and visualized by atomic force microscopy at the single molecule level. While wild-type and mutant HTT did not differ in their PAR binding ability, purified wild-type HTT protein increased in vitro PARP1 activity while mutant HTT did not. These results provide insight into an early molecular mechanism of HD, suggesting possible targets for the design of early preventive therapies.


Assuntos
Proteína Huntingtina , Doença de Huntington , Poli Adenosina Difosfato Ribose , Transdução de Sinais , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Poli Adenosina Difosfato Ribose/metabolismo , Dano ao DNA , Neurônios/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Reparo do DNA
2.
Proc Natl Acad Sci U S A ; 121(32): e2319091121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074279

RESUMO

Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.


Assuntos
Proteína Huntingtina , Lisossomos , Mitocôndrias , Proteínas de Ligação a RNA , Ubiquitina , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Lisossomos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Ubiquitina/metabolismo , Mitocôndrias/metabolismo , Autofagia , Animais , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Camundongos , Ligação Proteica , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Peptídeos/metabolismo
3.
Hum Mol Genet ; 32(9): 1483-1496, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36547263

RESUMO

Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.


Assuntos
Doença de Huntington , Integrinas , Humanos , Integrinas/metabolismo , Células Endoteliais/metabolismo , Doença de Huntington/patologia , Neuroglia/metabolismo , Barreira Hematoencefálica/metabolismo , Matriz Extracelular/metabolismo
4.
Brain ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39391934

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat mutation in the Huntingtin (HTT) gene. The mutation impacts neuronal protein homeostasis and cortical/striatal circuitry. SUMOylation is a post-translational modification with broad cellular effects including via modification of synaptic proteins. Here, we used an optimised SUMO protein-enrichment and mass spectrometry method to identify the protein SUMOylation/SUMO interaction proteome in the context of HD using R6/2 transgenic and non-transgenic (NT) mice. Significant changes in enrichment of SUMOylated and SUMO-interacting proteins were observed, including those involved in presynaptic function, cytomatrix at the active zone scaffolding, cytoskeleton organization, and glutamatergic signaling. Mitochondrial and RNA-binding proteins also showed altered enrichment. Modified SUMO-associated pathways in HD tissue include clathrin-mediated endocytosis signaling, synaptogenesis signaling, synaptic long-term potentiation, and SNARE signaling. To evaluate how modulation of SUMOylation might influence functional measures of neuronal activity in HD cells in vitro, we utilised primary neuronal cultures from R6/2 and NT mice. A receptor internalization assay for the metabotropic glutamate receptor 7 (mGLUR7), a SUMO enriched protein in the mass spec, showed decreased internalization in R6/2 neurons compared to NT. siRNA-mediated knockdown of the E3 SUMO ligase Protein Inhibitor of Activated STAT1 (Pias1), which can SUMO modify mGLUR7, prevented this HD phenotype. In addition, microelectrode array analysis of primary neuronal cultures indicated early hyperactivity in HD cells, while later timepoints demonstrated deficits in several measurements of neuronal activity within cortical neurons. HD phenotypes were rescued at selected timepoints following knockdown of Pias1. Collectively, our results provide a mouse brain SUMOome resource and show that significant alterations occur within the post-translational landscape of SUMO-protein interactions of synaptic proteins in HD mice, suggesting that targeting of synaptic SUMO networks may provide a proteostatic systems-based therapeutic approach for HD and other neurological. Disorders.

5.
Neurobiol Dis ; 201: 106673, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307401

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited and lethal neurodegenerative disease caused by the abnormal expansion of CAG repeats in the ATAXIN-1 (ATXN1) gene. Pathological studies identified dysfunction and loss of motor neurons (MNs) in the brain stem and spinal cord, which are thought to contribute to premature lethality by affecting the swallowing and breathing of SCA1 patients. However, the molecular and cellular mechanisms of MN pathogenesis remain unknown. To study SCA1 pathogenesis in human MNs, we differentiated induced pluripotent stem cells (iPSCs) derived from SCA1 patients and their unaffected siblings into MNs. We examined proliferation of progenitor cells, neurite outgrowth, spontaneous and glutamate-induced calcium activity of SCA1 MNs to investigate cellular mechanisms of pathogenesis. RNA sequencing was then used to identify transcriptional alterations in iPSC-derived MN progenitors (pMNs) and MNs which could underlie functional changes in SCA1 MNs. We found significantly decreased spontaneous and evoked calcium activity and identified dysregulation of genes regulating calcium signaling in SCA1 MNs. These results indicate that expanded ATXN1 causes dysfunctional calcium signaling in human MNs.

6.
Neurobiol Dis ; 195: 106502, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608784

RESUMO

Synaptic changes are early manifestations of neuronal dysfunction in Huntington's disease (HD). However, the mechanisms by which mutant HTT protein impacts synaptogenesis and function are not well understood. Herein we explored HD pathogenesis in the BACHD mouse model by examining synaptogenesis and function in long term primary cortical cultures. At DIV14 (days in vitro), BACHD cortical neurons showed no difference from WT neurons in synaptogenesis as revealed by colocalization of a pre-synaptic (Synapsin I) and a post-synaptic (PSD95) marker. From DIV21 to DIV35, BACHD neurons showed progressively reduced colocalization of Synapsin I and PSD95 relative to WT neurons. The deficits were effectively rescued by treatment of BACHD neurons with BDNF. The recombinant apical domain of CCT1 (ApiCCT1) yielded a partial rescuing effect. BACHD neurons also showed culture age-related significant functional deficits as revealed by multielectrode arrays (MEAs). These deficits were prevented by BDNF, whereas ApiCCT1 showed a less potent effect. These findings are evidence that deficits in BACHD synapse and function can be replicated in vitro and that BDNF or a TRiC-inspired reagent can potentially be protective against these changes in BACHD neurons. Our findings support the use of cellular models to further explicate HD pathogenesis and potential treatments.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Córtex Cerebral , Modelos Animais de Doenças , Doença de Huntington , Neurônios , Sinapses , Animais , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Camundongos Transgênicos , Células Cultivadas , Sinapsinas/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Camundongos Endogâmicos C57BL
7.
Am J Epidemiol ; 193(9): 1219-1223, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38760171

RESUMO

The Environmental Influences on Child Health Outcome (ECHO) program at the National Institutes of Health is an innovative, large, collaborative research initiative whose mission is to enhance the health of children for generations to come. The goal of the ECHO program is to examine effects of a broad array of early environmental exposures on child health and development. The information includes longitudinal data and biospecimens from more than 100 000 children and family members from diverse settings across the United States ECHO investigators have published collaborative analyses showing associations of environmental exposures-primarily in the developmentally sensitive pre-, peri-, and postnatal periods-with preterm birth and childhood asthma, obesity, neurodevelopment, and positive health. Investigators have addressed health disparities, joint effects of environmental and social determinants, and effects of mixtures of chemicals. The ECHO cohort is now entering its second 7-year cycle (2023-2030), which will add the preconception period to its current focus on prenatal through adolescence. Through a controlled access public-use database, ECHO makes its deidentified data available to the general scientific community. ECHO cohort data provide opportunities to fill major knowledge gaps in environmental epidemiology and to inform policies, practices, and programs to enhance child health. This article is part of a Special Collection on Environmental Epidemiology.


Assuntos
Saúde da Criança , Exposição Ambiental , Humanos , Exposição Ambiental/efeitos adversos , Criança , Estados Unidos/epidemiologia , Feminino , Pré-Escolar , Asma/epidemiologia , Asma/etiologia , Adolescente , Gravidez , Estudos de Coortes , Lactente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Masculino , Recém-Nascido , Nascimento Prematuro/epidemiologia , Desenvolvimento Infantil , National Institutes of Health (U.S.)
8.
J Cell Sci ; 135(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34982109

RESUMO

The human apolipoprotein E4 isoform (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and lysosomal dysfunction has been implicated in AD pathogenesis. We found, by examining cells stably expressing each APOE isoform, that APOE4 increases lysosomal trafficking, accumulates in enlarged lysosomes and late endosomes, alters autophagic flux and the abundance of autophagy proteins and lipid droplets, and alters the proteomic contents of lysosomes following internalization. We investigated APOE-related lysosomal trafficking further in cell culture, and found that APOE from the post-Golgi compartment is degraded through autophagy. We found that this autophagic process requires the lysosomal membrane protein LAMP2 in immortalized neuron-like and hepatic cells, and in mouse brain tissue. Several macroautophagy-associated proteins were also required for autophagic degradation and internalization of APOE in hepatic cells. The dysregulated autophagic flux and lysosomal trafficking of APOE4 that we observed suggest a possible novel mechanism that might contribute to AD pathogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Doença de Alzheimer , Proteômica , Doença de Alzheimer/genética , Animais , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Autofagia , Lisossomos , Camundongos , Isoformas de Proteínas/genética
9.
Mol Ther ; 31(12): 3545-3563, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37807512

RESUMO

Huntington's disease (HD), a genetic neurodegenerative disorder, primarily affects the striatum and cortex with progressive loss of medium-sized spiny neurons (MSNs) and pyramidal neurons, disrupting cortico-striatal circuitry. A promising regenerative therapeutic strategy of transplanting human neural stem cells (hNSCs) is challenged by the need for long-term functional integration. We previously described that, with short-term hNSC transplantation into the striatum of HD R6/2 mice, human cells differentiated into electrophysiologically active immature neurons, improving behavior and biochemical deficits. Here, we show that long-term (8 months) implantation of hNSCs into the striatum of HD zQ175 mice ameliorates behavioral deficits, increases brain-derived neurotrophic factor (BDNF) levels, and reduces mutant huntingtin (mHTT) accumulation. Patch clamp recordings, immunohistochemistry, single-nucleus RNA sequencing (RNA-seq), and electron microscopy demonstrate that hNSCs differentiate into diverse neuronal populations, including MSN- and interneuron-like cells, and form connections. Single-nucleus RNA-seq analysis also shows restoration of several mHTT-mediated transcriptional changes of endogenous striatal HD mouse cells. Remarkably, engrafted cells receive synaptic inputs, innervate host neurons, and improve membrane and synaptic properties. Overall, the findings support hNSC transplantation for further evaluation and clinical development for HD.


Assuntos
Doença de Huntington , Células-Tronco Neurais , Humanos , Camundongos , Animais , Doença de Huntington/genética , Doença de Huntington/terapia , Corpo Estriado , Neurônios , Fenótipo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteína Huntingtina/genética
10.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468657

RESUMO

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA , DNA/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Inibidoras de STAT Ativados/genética , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Animais , Diferenciação Celular , DNA/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Cultura Primária de Células , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Transcrição Gênica
11.
J Virol ; 96(4): e0196921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34935438

RESUMO

Unlike SARS-CoV-1 and MERS-CoV, infection with SARS-CoV-2, the viral pathogen responsible for COVID-19, is often associated with neurologic symptoms that range from mild to severe, yet increasing evidence argues the virus does not exhibit extensive neuroinvasive properties. We demonstrate SARS-CoV-2 can infect and replicate in human iPSC-derived neurons and that infection shows limited antiviral and inflammatory responses but increased activation of EIF2 signaling following infection as determined by RNA sequencing. Intranasal infection of K18 human ACE2 transgenic mice (K18-hACE2) with SARS-CoV-2 resulted in lung pathology associated with viral replication and immune cell infiltration. In addition, ∼50% of infected mice exhibited CNS infection characterized by wide-spread viral replication in neurons accompanied by increased expression of chemokine (Cxcl9, Cxcl10, Ccl2, Ccl5 and Ccl19) and cytokine (Ifn-λ and Tnf-α) transcripts associated with microgliosis and a neuroinflammatory response consisting primarily of monocytes/macrophages. Microglia depletion via administration of colony-stimulating factor 1 receptor inhibitor, PLX5622, in SARS-CoV-2 infected mice did not affect survival or viral replication but did result in dampened expression of proinflammatory cytokine/chemokine transcripts and a reduction in monocyte/macrophage infiltration. These results argue that microglia are dispensable in terms of controlling SARS-CoV-2 replication in in the K18-hACE2 model but do contribute to an inflammatory response through expression of pro-inflammatory genes. Collectively, these findings contribute to previous work demonstrating the ability of SARS-CoV-2 to infect neurons as well as emphasizing the potential use of the K18-hACE2 model to study immunological and neuropathological aspects related to SARS-CoV-2-induced neurologic disease. IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the role of microglia in aiding in host defense following experimental infection of the central nervous system (CNS) of K18-hACE2 with SARS-CoV-2, the causative agent of COVID-19. Neurologic symptoms that range in severity are common in COVID-19 patients and understanding immune responses that contribute to restricting neurologic disease can provide important insight into better understanding consequences associated with SARS-CoV-2 infection of the CNS.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19/imunologia , Viroses do Sistema Nervoso Central/imunologia , Microglia/imunologia , SARS-CoV-2/fisiologia , Replicação Viral/imunologia , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Viroses do Sistema Nervoso Central/genética , Viroses do Sistema Nervoso Central/virologia , Quimiocinas/genética , Quimiocinas/imunologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Microglia/virologia , Neurônios/imunologia , Neurônios/virologia , Replicação Viral/genética
12.
Brain ; 145(5): 1584-1597, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35262656

RESUMO

There has been substantial progress in the development of regenerative medicine strategies for CNS disorders over the last decade, with progression to early clinical studies for some conditions. However, there are multiple challenges along the translational pipeline, many of which are common across diseases and pertinent to multiple donor cell types. These include defining the point at which the preclinical data are sufficiently compelling to permit progression to the first clinical studies; scaling-up, characterization, quality control and validation of the cell product; design, validation and approval of the surgical device; and operative procedures for safe and effective delivery of cell product to the brain. Furthermore, clinical trials that incorporate principles of efficient design and disease-specific outcomes are urgently needed (particularly for those undertaken in rare diseases, where relatively small cohorts are an additional limiting factor), and all processes must be adaptable in a dynamic regulatory environment. Here we set out the challenges associated with the clinical translation of cell therapy, using Huntington's disease as a specific example, and suggest potential strategies to address these challenges. Huntington's disease presents a clear unmet need, but, importantly, it is an autosomal dominant condition with a readily available gene test, full genetic penetrance and a wide range of associated animal models, which together mean that it is a powerful condition in which to develop principles and test experimental therapeutics. We propose that solving these challenges in Huntington's disease would provide a road map for many other neurological conditions. This white paper represents a consensus opinion emerging from a series of meetings of the international translational platforms Stem Cells for Huntington's Disease and the European Huntington's Disease Network Advanced Therapies Working Group, established to identify the challenges of cell therapy, share experience, develop guidance and highlight future directions, with the aim to expedite progress towards therapies for clinical benefit in Huntington's disease.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Encéfalo/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/terapia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia
13.
Hum Mol Genet ; 29(2): 202-215, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31696228

RESUMO

Transcriptional and epigenetic alterations occur early in Huntington's disease (HD), and treatment with epigenetic modulators is beneficial in several HD animal models. The drug JQ1, which inhibits histone acetyl-lysine reader bromodomains, has shown promise for multiple cancers and neurodegenerative disease. We tested whether JQ1 could improve behavioral phenotypes in the R6/2 mouse model of HD and modulate HD-associated changes in transcription and epigenomics. R6/2 and non-transgenic (NT) mice were treated with JQ1 daily from 5 to 11 weeks of age and behavioral phenotypes evaluated over this period. Following the trial, cortex and striatum were isolated and subjected to mRNA-seq and ChIP-seq for the histone marks H3K4me3 and H3K27ac. Initially, JQ1 enhanced motor performance in NT mice. In R6/2 mice, however, JQ1 had no effect on rotarod or grip strength but exacerbated weight loss and worsened performance on the pole test. JQ1-induced gene expression changes in NT mice were distinct from those in R6/2 and primarily involved protein translation and bioenergetics pathways. Dysregulation of HD-related pathways in striatum was exacerbated by JQ1 in R6/2 mice, but not in NTs, and JQ1 caused a corresponding increase in the formation of a mutant huntingtin protein-dependent high molecular weight species associated with pathogenesis. This study suggests that drugs predicted to be beneficial based on their mode of action and effects in wild-type or in other neurodegenerative disease models may have an altered impact in the HD context. These observations have important implications in the development of epigenetic modulators as therapies for HD.


Assuntos
Azepinas/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Triazóis/farmacologia , Acetilação , Animais , Escala de Avaliação Comportamental , Sintomas Comportamentais/tratamento farmacológico , Córtex Cerebral/patologia , Sequenciamento de Cromatina por Imunoprecipitação , Corpo Estriado/patologia , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Ontologia Genética , Histonas/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Proc Natl Acad Sci U S A ; 116(22): 10952-10961, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31088970

RESUMO

Neuroinflammation is an important contributor to neuronal pathology and death in neurodegenerative diseases and neuronal injury. Therapeutic interventions blocking the activity of the inflammatory kinase IKKß, a key regulator of neuroinflammatory pathways, is protective in several animal models of neurodegenerative disease and neuronal injury. In Huntington's disease (HD), however, significant questions exist as to the impact of blocking or diminishing the activity of IKKß on HD pathology given its potential role in Huntingtin (HTT) degradation. In cell culture, IKKß phosphorylates HTT serine (S) 13 and activates HTT degradation, a process that becomes impaired with polyQ expansion. To investigate the in vivo relationship of IKKß to HTT S13 phosphorylation and HD progression, we crossed conditional tamoxifen-inducible IKKß knockout mice with R6/1 HD mice. Behavioral assays in these mice showed a significant worsening of HD pathological phenotypes. The increased behavioral pathology correlated with reduced levels of endogenous mouse full-length phospho-S13 HTT, supporting the importance of IKKß in the phosphorylation of HTT S13 in vivo. Notably, many striatal autophagy genes were up-regulated in HD vs. control mice; however, IKKß knockout partially reduced this up-regulation in HD, increased striatal neurodegeneration, and enhanced an activated microglial response. We propose that IKKß is protective in striatal neurons early in HD progression via phosphorylation of HTT S13. As IKKß is also required for up-regulation of some autophagy genes and HTT is a scaffold for selective autophagy, IKKß may influence autophagy through multiple mechanisms to maintain healthy striatal function, thereby reducing neuronal degeneration to slow HD onset.


Assuntos
Doença de Huntington , Quinase I-kappa B , Animais , Autofagia/genética , Corpo Estriado/citologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Progressão da Doença , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/patologia , Fosforilação/genética
15.
Toxicol Appl Pharmacol ; 415: 115430, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524446

RESUMO

Air pollutants may increase risk for cardiopulmonary disease, particularly in susceptible populations with metabolic stressors such as diabetes and unhealthy diet. We investigated effects of inhaled ozone exposure and high-cholesterol diet (HCD) in healthy Wistar and Wistar-derived Goto-Kakizaki (GK) rats, a non-obese model of type 2 diabetes. Male rats (4-week old) were fed normal diet (ND) or HCD for 12 weeks and then exposed to filtered air or 1.0 ppm ozone (6 h/day) for 1 or 2 days. We examined pulmonary, vascular, hematology, and inflammatory responses after each exposure plus an 18-h recovery period. In both strains, ozone induced acute bronchiolar epithelial necrosis and inflammation on histopathology and pulmonary protein leakage and neutrophilia; the protein leakage was more rapid and persistent in GK compared to Wistar rats. Ozone also decreased lymphocytes after day 1 in both strains consuming ND (~50%), while HCD increased circulating leukocytes. Ozone increased plasma thrombin/antithrombin complexes and platelet disaggregation in Wistar rats on HCD and exacerbated diet effects on serum IFN-γ, IL-6, KC-GRO, IL-13, and TNF-α, which were higher with HCD (Wistar>GK). Ex vivo aortic contractility to phenylephrine was lower in GK versus Wistar rats at baseline(~30%); ozone enhanced this effect in Wistar rats on ND. GK rats on HCD had higher aortic e-NOS and tPA expression compared to Wistar rats. Ozone increased e-NOS in GK rats on ND (~3-fold) and Wistar rats on HCD (~2-fold). These findings demonstrate ways in which underlying diabetes and HCD may exacerbate pulmonary, systemic, and vascular effects of inhaled pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Aorta Torácica/efeitos dos fármacos , Colesterol na Dieta/toxicidade , Diabetes Mellitus Tipo 2/complicações , Dieta Aterogênica/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Doenças Vasculares/induzido quimicamente , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Biomarcadores/sangue , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Colesterol na Dieta/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Modelos Animais de Doenças , Mediadores da Inflamação/sangue , Exposição por Inalação , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Masculino , Necrose , Edema Pulmonar/sangue , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/patologia , Ratos Wistar , Doenças Vasculares/sangue , Doenças Vasculares/fisiopatologia , Vasoconstrição/efeitos dos fármacos
16.
Brain ; 143(1): 266-288, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31848580

RESUMO

Huntington's disease is associated with a reactive microglial response and consequent inflammation. To address the role of these cells in disease pathogenesis, we depleted microglia from R6/2 mice, a rapidly progressing model of Huntington's disease marked by behavioural impairment, mutant huntingtin (mHTT) accumulation, and early death, through colony-stimulating factor 1 receptor inhibition (CSF1Ri) with pexidartinib (PLX3397) for the duration of disease. Although we observed an interferon gene signature in addition to downregulated neuritogenic and synaptic gene pathways with disease, overt inflammation was not evident by microglial morphology or cytokine transcript levels in R6/2 mice. Nonetheless, CSF1Ri-induced microglial elimination reduced or prevented disease-related grip strength and object recognition deficits, mHTT accumulation, astrogliosis, and striatal volume loss, the latter of which was not associated with reductions in cell number but with the extracellular accumulation of chondroitin sulphate proteoglycans (CSPGs)-a primary component of glial scars. A concurrent loss of proteoglycan-containing perineuronal nets was also evident in R6/2 mice, and microglial elimination not only prevented this but also strikingly increased perineuronal nets in the brains of naïve littermates, suggesting a new role for microglia as homeostatic regulators of perineuronal net formation and integrity.


Assuntos
Aminopiridinas/farmacologia , Matriz Extracelular/efeitos dos fármacos , Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/metabolismo , Microglia/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Pirróis/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/efeitos dos fármacos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Citocinas/efeitos dos fármacos , Citocinas/genética , Modelos Animais de Doenças , Regulação para Baixo , Matriz Extracelular/metabolismo , Força da Mão , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Doença de Huntington/fisiopatologia , Inflamação , Camundongos , Camundongos Transgênicos , Neostriado/patologia , Neuritos/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Transcriptoma
17.
J Toxicol Environ Health A ; 83(23-24): 748-763, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33016233

RESUMO

Wildland fires (WF) are linked to adverse health impacts related to poor air quality. The cardiovascular impacts of emissions from specific biomass sources are however unknown. The purpose of this study was to assess the cardiovascular impacts of a single exposure to peat smoke, a key regional WF air pollution source, and relate these to baroreceptor sensitivity and inflammation. Three-month-old male Wistar-Kyoto rats, implanted with radiotelemeters for continuous monitoring of heart rate (HR), blood pressure (BP), and spontaneous baroreflex sensitivity (BRS), were exposed once, for 1-hr, to filtered air or low (0.38 mg/m3 PM) or high (4.04 mg/m3) concentrations of peat smoke. Systemic markers of inflammation and sensitivity to aconitine-induced cardiac arrhythmias, a measure of latent myocardial vulnerability, were assessed in separate cohorts of rats 24 hr after exposure. PM size (low peat = 0.4-0.5 microns vs. high peat = 0.8-1.2 microns) and proportion of organic carbon (low peat = 77% vs. high peat = 65%) varied with exposure level. Exposure to high peat and to a lesser extent low peat increased systolic and diastolic BP relative to filtered air. In contrast, only exposure to low peat elevated BRS and aconitine-induced arrhythmogenesis relative to filtered air and increased circulating levels of low-density lipoprotein cholesterol, complement components C3 and C4, angiotensin-converting enzyme (ACE), and white blood cells. Taken together, exposure to peat smoke produced overt and latent cardiovascular consequences that were likely influenced by physicochemical characteristics of the smoke and associated adaptive homeostatic mechanisms.


Assuntos
Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Fumaça/efeitos adversos , Animais , Masculino , Ratos , Ratos Endogâmicos WKY , Solo , Testes de Toxicidade Aguda
18.
Inhal Toxicol ; 32(8): 342-353, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32838590

RESUMO

OBJECTIVE: Previous studies have shown that air pollution exposure primes the body to heightened responses to everyday stressors of the cardiovascular system. The purpose of this study was to examine the utility of postprandial responses to a high carbohydrate oral load, a cardiometabolic stressor long used to predict cardiovascular risk, in assessing the impacts of exposure to eucalyptus smoke (ES), a contributor to wildland fire air pollution in the Western coast of the United States. MATERIALS AND METHODS: Three-month-old male Sprague Dawley rats were exposed once (1 h) to filtered air (FA) or ES (700 µg/m3 fine particulate matter), generated by burning eucalyptus in a tube furnace. Rats were then fasted for six hours the following morning, and subsequently administered an oral gavage of either water or a HC suspension (70 kcal% from carbohydrate), mimicking a HC meal. Two hours post gavage, cardiovascular ultrasound, cardiac pressure-volume (PV), and baroreceptor sensitivity assessments were made, and pulmonary and systemic markers assessed. RESULTS: ES inhalation alone increased serum interleukin (IL)-4 and nasal airway levels of gamma glutamyl transferase. HC gavage alone increased blood glucose, blood pressure, and serum IL-6 and IL-13 compared to water vehicle. By contrast, only ES-exposed and HC-challenged animals had increased PV loop measures of cardiac output, ejection fraction %, dP/dtmax, dP/dtmin, and stroke work compared to ES exposure alone and/or HC challenge alone. DISCUSSION AND CONCLUSIONS: Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Carboidratos da Dieta/farmacologia , Eucalyptus , Fumaça/efeitos adversos , Administração por Inalação , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Débito Cardíaco/efeitos dos fármacos , Citocinas/sangue , Masculino , Líquido da Lavagem Nasal/química , Líquido da Lavagem Nasal/citologia , Período Pós-Prandial/fisiologia , Ratos Sprague-Dawley , Volume Sistólico/efeitos dos fármacos , Incêndios Florestais
19.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533375

RESUMO

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Assuntos
Doença de Huntington/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Adulto , Idoso , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Doença de Huntington/genética , Proteína 1 Associada a ECH Semelhante a Kelch/química , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/química , Células-Tronco Neurais/metabolismo , Fármacos Neuroprotetores/farmacologia , Conformação Proteica/efeitos dos fármacos , Ratos , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 113(38): E5655-64, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601642

RESUMO

Corticostriatal atrophy is a cardinal manifestation of Huntington's disease (HD). However, the mechanism(s) by which mutant huntingtin (mHTT) protein contributes to the degeneration of the corticostriatal circuit is not well understood. We recreated the corticostriatal circuit in microfluidic chambers, pairing cortical and striatal neurons from the BACHD model of HD and its WT control. There were reduced synaptic connectivity and atrophy of striatal neurons in cultures in which BACHD cortical and striatal neurons were paired. However, these changes were prevented if WT cortical neurons were paired with BACHD striatal neurons; synthesis and release of brain-derived neurotrophic factor (BDNF) from WT cortical axons were responsible. Consistent with these findings, there was a marked reduction in anterograde transport of BDNF in BACHD cortical neurons. Subunits of the cytosolic chaperonin T-complex 1 (TCP-1) ring complex (TRiC or CCT for chaperonin containing TCP-1) have been shown to reduce mHTT levels. Both CCT3 and the apical domain of CCT1 (ApiCCT1) decreased the level of mHTT in BACHD cortical neurons. In cortical axons, they normalized anterograde BDNF transport, restored retrograde BDNF transport, and normalized lysosomal transport. Importantly, treating BACHD cortical neurons with ApiCCT1 prevented BACHD striatal neuronal atrophy by enhancing release of BDNF that subsequently acts through tyrosine receptor kinase B (TrkB) receptor on striatal neurons. Our findings are evidence that TRiC reagent-mediated reductions in mHTT enhanced BDNF delivery to restore the trophic status of BACHD striatal neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Chaperonina com TCP-1/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Degenerações Espinocerebelares/genética , Animais , Atrofia/genética , Atrofia/metabolismo , Atrofia/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Chaperonina com TCP-1/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/patologia , Dispositivos Lab-On-A-Chip , Camundongos , Mutação , Neurônios/metabolismo , Neurônios/patologia , Receptor trkB/genética , Receptor trkB/metabolismo , Degenerações Espinocerebelares/tratamento farmacológico , Degenerações Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA