Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(11): 1456-1468, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636466

RESUMO

T cell specification and commitment require Notch signaling. Although the requirement for Notch signaling during intrathymic T cell development is known, it is still unclear whether the onset of T cell priming can occur in a prethymic niche and whether RBPJ-dependent Notch signaling has a role during this event. Here, we established an Rbpj-inducible system that allowed temporal and tissue-specific control of the responsiveness to Notch in all hematopoietic cells. Using this system, we found that Notch signaling was required before the early T cell progenitor stage in the thymus. Lymphoid-primed multipotent progenitors in the bone marrow underwent Notch signaling with Rbpj induction, which inhibited development towards the myeloid lineage in thymus-seeding progenitors. Thus, our results indicated that the onset of T cell differentiation occurred in a prethymic setting, and that Notch played an important role during this event.


Assuntos
Diferenciação Celular/imunologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Células Precursoras de Linfócitos T/fisiologia , Receptores Notch/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Linhagem da Célula/imunologia , Separação Celular , Feminino , Citometria de Fluxo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Masculino , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/metabolismo , Timo/citologia , Timo/imunologia
2.
J Immunol ; 209(1): 77-92, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35705252

RESUMO

The zinc-finger transcription factor GATA-3 plays a crucial role during early T cell development and also dictates later T cell differentiation outcomes. However, its role and collaboration with the Notch signaling pathway in the induction of T lineage specification and commitment have not been fully elucidated. We show that GATA-3 deficiency in mouse hematopoietic progenitors results in an early block in T cell development despite the presence of Notch signals, with a failure to upregulate Bcl11b expression, leading to a diversion along a myeloid, but not a B cell, lineage fate. GATA-3 deficiency in the presence of Notch signaling results in the apoptosis of early T lineage cells, as seen with inhibition of CDK4/6 (cyclin-dependent kinases 4 and 6) function, and dysregulated cyclin-dependent kinase inhibitor 2b (Cdkn2b) expression. We also show that GATA-3 induces Bcl11b, and together with Bcl11b represses Cdkn2b expression; however, loss of Cdkn2b failed to rescue the developmental block of GATA-3-deficient T cell progenitor. Our findings provide a signaling and transcriptional network by which the T lineage program in response to Notch signals is realized.


Assuntos
Fator de Transcrição GATA3/metabolismo , Transdução de Sinais , Linfócitos T , Animais , Diferenciação Celular , Linhagem da Célula , Proteínas Inibidoras de Quinase Dependente de Ciclina , Redes Reguladoras de Genes , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Semin Immunol ; 23(5): 350-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21981947

RESUMO

The thymus is seeded by bone marrow-derived progenitors, which undergo a series of differentiation and proliferation events in order to generate functional T lymphocytes. The Notch signaling pathway, together with multiple transcription factors, act in concert to commit progenitors to a T-lineage fate, extinguishing non-T cell potential, inducing thymocyte differentiation and supporting proliferation and survival along the way to becoming a mature T cell. This review focuses on recent evidence regarding the complex interplay between the Notch pathway and other key transcription factors at specific lineage-decision points during the program of T cell development.


Assuntos
Diferenciação Celular , Receptores Notch/metabolismo , Linfócitos T/citologia , Fatores de Transcrição/metabolismo , Linhagem da Célula , Humanos , Modelos Biológicos , Transdução de Sinais , Linfócitos T/metabolismo
4.
Cell Rep ; 35(10): 109227, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107257

RESUMO

γδ T cells form an integral arm of the immune system and are critical during protective and destructive immunity. However, how γδ T cells are functionally programmed in vivo remains unclear. Here, we employ RBPJ-inducible and KN6-transgenic mice to assess the roles of ontogenic timing, T cell receptor (TCR) signal strength, and Notch signaling. We find skewing of Vγ1+ cells toward the PLZF+Lin28b+ lineage at the fetal stage. Generation of interleukin-17 (IL-17)-producing γδ T cells is favored during, although not exclusive to, the fetal stage. Surprisingly, Notch signaling is dispensable for peripheral γδ T cell IL-17 production. Strong TCR signals, together with Notch, promote IL-4 differentiation. Conversely, less strong TCR signals promote Notch-independent IL-17 differentiation. Single-cell transcriptomic analysis reveals differential programming instilled by TCR signal strength and Notch for specific subsets. Thus, our results precisely define the roles of ontogenic timing, TCR signal strength, and Notch signaling in γδ T cell functional programming in vivo.


Assuntos
Interferon gama/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Notch/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos , Transdução de Sinais
5.
Cancer Discov ; 7(11): 1320-1335, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28790030

RESUMO

Notch activation, which is associated with basal-like breast cancer (BLBC), normally directs tissue patterning, suggesting that it may shape the tumor microenvironment. Here, we show that Notch in tumor cells regulates the expression of two powerful proinflammatory cytokines, IL1ß and CCL2, and the recruitment of tumor-associated macrophages (TAM). Notch also regulates TGFß-mediated activation of tumor cells by TAMs, closing a Notch-dependent paracrine signaling loop between these two cell types. We use a mouse model in which Notch can be regulated in spontaneous mammary carcinoma to confirm that IL1ß and CCL2 production, and macrophage recruitment are Notch-dependent. In human disease, expression array analyses demonstrate a striking association between Notch activation, IL1ß and CCL2 production, macrophage infiltration, and BLBC. These findings place Notch at the nexus of a vicious cycle of macrophage infiltration and amplified cytokine secretion and provide immunotherapeutic opportunities in BLBC.Significance: BLBC is aggressive and has an unmet need for effective targeted treatment. Our data highlight immunotherapeutic opportunities in Notch-activated BLBC. Effective IL1ß and CCL2 antagonists are currently in clinical review to treat benign inflammatory disease, and their transition to the cancer clinic could have a rapid impact. Cancer Discov; 7(11); 1320-35. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1201.


Assuntos
Neoplasias da Mama/genética , Quimiocina CCL2/genética , Interleucina-1beta/genética , Receptor Notch1/genética , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Quimiocina CCL2/imunologia , Quimiocina CCL2/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-1beta/imunologia , Interleucina-1beta/uso terapêutico , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Comunicação Parácrina/genética , Receptor Notch1/imunologia , Receptor Notch1/uso terapêutico , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/genética , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA