Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Amino Acids ; 48(3): 733-750, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26507545

RESUMO

We compared immediate post-exercise whey protein (WP, 500 mg) versus L-leucine (LEU, 54 mg) feedings on skeletal muscle protein synthesis (MPS) mechanisms and ribosome biogenesis markers 3 h following unilateral plantarflexor resistance exercise in male, Wistar rats (~250 g). Additionally, in vitro experiments were performed on differentiated C2C12 myotubes to compare nutrient (i.e., WP, LEU) and 'exercise-like' treatments (i.e., caffeine, hydrogen peroxide, and AICAR) on ribosome biogenesis markers. LEU and WP significantly increased phosphorylated-rpS6 (Ser235/236) in the exercised (EX) leg 2.4-fold (P < 0.01) and 2.7-fold (P < 0.001) compared to the non-EX leg, respectively, whereas vehicle-fed control (CTL) did not (+65 %, P > 0.05). Compared to the non-EX leg, MPS levels increased 32 % and 52 % in the EX leg of CTL (P < 0.01) and WP rats (P < 0.001), respectively, but not in LEU rats (+15 %, P > 0.05). Several genes associated with ribosome biogenesis robustly increased in the EX versus non-EX legs of all treatments; specifically, c-Myc mRNA, Nop56 mRNA, Bop1 mRNA, Ncl mRNA, Npm1 mRNA, Fb1 mRNA, and Xpo-5 mRNA. However, only LEU significantly increased 45S pre-rRNA levels in the EX leg (63 %, P < 0.001). In vitro findings confirmed that 'exercise-like' treatments similarly altered markers of ribosome biogenesis, but only LEU increased 47S pre-rRNA levels (P < 0.01). Collectively, our data suggests that resistance exercise, as well as 'exercise-like' signals in vitro, acutely increase the expression of genes associated with ribosome biogenesis independent of nutrient provision. Moreover, while EX with or without WP appears superior for enhancing translational efficiency (i.e., increasing MPS per unit of RNA), LEU administration (or co-administration) may further enhance ribosome biogenesis over prolonged periods with resistance exercise.


Assuntos
Leucina/metabolismo , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Treinamento Resistido , Ribossomos/metabolismo , Proteínas do Soro do Leite/metabolismo , Animais , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Ratos , Ratos Wistar , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo , Ribossomos/genética
2.
J Am Coll Nutr ; 35(8): 679-691, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27333407

RESUMO

OBJECTIVE: The purpose of this study was to investigate the effects of Fortetropin on skeletal muscle growth and strength in resistance-trained individuals and to investigate the anabolic and catabolic signaling effects using human and rodent models. METHODS: In the rodent model, male Wistar rats (250 g) were gavage fed with either 1.2 ml of tap water control (CTL) or 0.26 g Fortetropin for 8 days. Then rats participated in a unilateral plantarflexion exercise bout. Nonexercised and exercised limbs were harvested at 180 minutes following and analyzed for gene and protein expression relative to mammalian target of rapamycin (mTOR) and ubiquitin signaling. For the human model, 45 (of whom 37 completed the study), resistance-trained college-aged males were divided equally into 3 groups receiving a placebo macronutrient matched control, 6.6 or 19.8 g of Fortetropin supplementation during 12 weeks of resistance training. Lean mass, muscle thickness, and lower and upper body strength were measured before and after 12 weeks of training. RESULTS: The human study results indicated a Group × Time effect (p ≤ 0.05) for lean mass in which the 6.6 g (+1.7 kg) and 19.8 g (+1.68 kg) but not placebo (+0.6 kg) groups increased lean mass. Similarly, there was a Group × Time effect for muscle thickness (p ≤ 0.05), which increased in the experimental groups only. All groups increased equally in bench press and leg press strength. In the rodent model, a main effect for exercise (p ≤ 0.05) in which the control plus exercise but not Fortetropin plus exercise increased both ubiquitin monomer protein expression and polyubiquitination. mTOR signaling was elevated to a greater extent in the Fortetropin exercising conditions as indicated by greater phosphorylation status of 4EBP1, rp6, and p70S6K for both exercising conditions. CONCLUSIONS: Fortetropin supplementation increases lean body mass (LBM) and decreases markers of protein breakdown while simultaneously increasing mTOR signaling.


Assuntos
Composição Corporal/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Proteolipídeos/administração & dosagem , Adolescente , Animais , Dieta , Suplementos Nutricionais , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Miostatina/sangue , Placebos , Ratos , Ratos Wistar , Treinamento Resistido , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Ubiquitina/fisiologia , Adulto Jovem
3.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 11): i86-i87, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23284315

RESUMO

The crystal structure of durangite, ideally NaAl(AsO(4))F (chemical name sodium aluminium arsenate fluoride), has been determined previously [Kokkoros (1938). Z. Kristallogr.99, 38-49] using Weissenberg film data without reporting displacement parameters of atoms or a reliability factor. This study reports the redetermination of the structure of durangite using single-crystal X-ray diffraction data from a natural sample with composition (Na(0.95)Li(0.05))(Al(0.91)Fe(3+) (0.07)Mn(3+) (0.02))(AsO(4))(F(0.73)(OH)(0.27)) from the type locality, the Barranca mine, Coneto de Comonfort, Durango, Mexico. Durangite is isostructural with minerals of the titanite group in the space group C2/c. Its structure is characterized by kinked chains of corner-sharing AlO(4)F(2) octa-hedra parallel to the c axis. These chains are cross-linked by isolated AsO(4) tetra-hedra, forming a three-dimensional framework. The Na(+) cation (site symmetry 2) occupies the inter-stitial sites and is coordinated by one F(-) and six O(2-) anions. The AlO(4)F(2) octa-hedron has symmetry -1; it is flattened, with the Al-F bond length [1.8457 (4) Å] shorter than the Al-O bond lengths [1.8913 (8) and 1.9002 (9) Å]. Examination of the Raman spectra for arsenate minerals in the titanite group reveals that the position of the band originating from the As-O symmetric stretching vibrations shifts to lower wavenumbers from durangite, maxwellite [ideally NaFe(AsO(4))F], to tilasite [CaMg(AsO(4))F].

4.
PLoS One ; 11(5): e0155153, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182886

RESUMO

BACKGROUND: The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. METHODS: Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. RESULTS: Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-ß (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. CONCLUSIONS: Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Ácidos Araquidônicos/farmacologia , Composição Corporal/efeitos dos fármacos , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Fenômenos Fisiológicos Musculoesqueléticos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Adolescente , Adulto , Ração Animal , Animais , Composição Corporal/genética , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Modelos Animais , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Força Muscular/efeitos dos fármacos , Fosfoproteínas/metabolismo , Condicionamento Físico Animal , Biossíntese de Proteínas , Proteômica/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Treinamento Resistido , Serina-Treonina Quinases TOR/metabolismo , Adulto Jovem
5.
Dev Sci ; 10(3): 333-56, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17444974

RESUMO

A connectionist model of causal attribution is presented, emphasizing the use of domain-general principles of processing and learning previously employed in models of semantic cognition. The model categorizes objects dependent upon their observed 'causal properties' and is capable of making several types of inferences that 4-year-old children have been shown to be capable of. The model gives rise to approximate conformity to normative models of causal inference and gives approximate estimates of the probability that an object presented in an ambiguous situation actually possesses a particular causal power, based on background knowledge and recent observations. It accounts for data from three sets of experimental studies of the causal inferencing abilities of young children. The model provides a base for further efforts to delineate the intuitive mechanisms of causal inference employed by children and adults, without appealing to inherent principles or mechanisms specialized for causal as opposed to other forms of reasoning.


Assuntos
Aprendizagem por Associação/fisiologia , Teorema de Bayes , Cognição/fisiologia , Modelos Psicológicos , Córtex Cerebral/fisiologia , Pré-Escolar , Simulação por Computador , Hipocampo/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA