Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993154

RESUMO

Mycobacterium tuberculosis is the single most important global infectious disease killer and a World Health Organization critical priority pathogen for development of new antimicrobials. M. tuberculosis DNA gyrase is a validated target for anti-TB agents, but those in current use target DNA breakage-reunion, rather than the ATPase activity of the GyrB subunit. Here, virtual screening, subsequently validated by whole-cell and enzyme inhibition assays, was applied to identify candidate compounds that inhibit M. tuberculosis GyrB ATPase activity from the Specs compound library. This approach yielded six compounds: four carbazole derivatives (1, 2, 3, and 8), the benzoindole derivative 11, and the indole derivative 14. Carbazole derivatives can be considered a new scaffold for M. tuberculosis DNA gyrase ATPase inhibitors. IC50 values of compounds 8, 11, and 14 (0.26, 0.56, and 0.08 µM, respectively) for inhibition of M. tuberculosis DNA gyrase ATPase activity are 5-fold, 2-fold, and 16-fold better than the known DNA gyrase ATPase inhibitor novobiocin. MIC values of these compounds against growth of M. tuberculosis H37Ra are 25.0, 3.1, and 6.2 µg/mL, respectively, superior to novobiocin (MIC > 100.0 µg/mL). Molecular dynamics simulations of models of docked GyrB:inhibitor complexes suggest that hydrogen bond interactions with GyrB Asp79 are crucial for high-affinity binding of compounds 8, 11, and 14 to M. tuberculosis GyrB for inhibition of ATPase activity. These data demonstrate that virtual screening can identify known and new scaffolds that inhibit both M. tuberculosis DNA gyrase ATPase activity in vitro and growth of M. tuberculosis bacteria.

2.
J Chem Inf Model ; 63(9): 2707-2718, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074047

RESUMO

Mutations in DNA gyrase confer resistance to fluoroquinolones, second-line antibiotics for Mycobacterium tuberculosis infections. Identification of new agents that inhibit M. tuberculosis DNA gyrase ATPase activity is one strategy to overcome this. Here, bioisosteric designs using known inhibitors as templates were employed to define novel inhibitors of M. tuberculosis DNA gyrase ATPase activity. This yielded the modified compound R3-13 with improved drug-likeness compared to the template inhibitor that acted as a promising ATPase inhibitor against M. tuberculosis DNA gyrase. Utilization of compound R3-13 as a virtual screening template, supported by subsequent biological assays, identified seven further M. tuberculosis DNA gyrase ATPase inhibitors with IC50 values in the range of 0.42-3.59 µM. The most active compound 1 showed an IC50 value of 0.42 µM, 3-fold better than the comparator ATPase inhibitor novobiocin (1.27 µM). Compound 1 showed noncytotoxicity to Caco-2 cells at concentrations up to 76-fold higher than its IC50 value. Molecular dynamics simulations followed by decomposition energy calculations identified that compound 1 occupies the binding pocket utilized by the adenosine group of the ATP analogue AMPPNP in the M. tuberculosis DNA gyrase GyrB subunit. The most prominent contribution to the binding of compound 1 to M. tuberculosis GyrB subunit is made by residue Asp79, which forms two hydrogen bonds with the OH group of this compound and also participates in the binding of AMPPNP. Compound 1 represents a potential new scaffold for further exploration and optimization as a M. tuberculosis DNA gyrase ATPase inhibitor and candidate anti-tuberculosis agent.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , DNA Girase/química , Adenilil Imidodifosfato/uso terapêutico , Adenosina Trifosfatases/química , Células CACO-2 , Antituberculosos/farmacologia , Antituberculosos/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/uso terapêutico , DNA
3.
J Chem Inf Model ; 62(7): 1680-1690, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35347987

RESUMO

Mycobacterium tuberculosis DNA gyrase manipulates the DNA topology using controlled breakage and religation of DNA driven by ATP hydrolysis. DNA gyrase has been validated as the enzyme target of fluoroquinolones (FQs), second-line antibiotics used for the treatment of multidrug-resistant tuberculosis. Mutations around the DNA gyrase DNA-binding site result in the emergence of FQ resistance in M. tuberculosis; inhibition of DNA gyrase ATPase activity is one strategy to overcome this. Here, virtual screening, subsequently validated by biological assays, was applied to select candidate inhibitors of the M. tuberculosis DNA gyrase ATPase activity from the Specs compound library (www.specs.net). Thirty compounds were identified and selected as hits for in vitro biological assays, of which two compounds, G24 and G26, inhibited the growth of M. tuberculosis H37Rv with a minimal inhibitory concentration of 12.5 µg/mL. The two compounds inhibited DNA gyrase ATPase activity with IC50 values of 2.69 and 2.46 µM, respectively, suggesting this to be the likely basis of their antitubercular activity. Models of complexes of compounds G24 and G26 bound to the M. tuberculosis DNA gyrase ATP-binding site, generated by molecular dynamics simulations followed by pharmacophore mapping analysis, showed hydrophobic interactions of inhibitor hydrophobic headgroups and electrostatic and hydrogen bond interactions of the polar tails, which are likely to be important for their inhibition. Decreasing compound lipophilicity by increasing the polarity of these tails then presents a likely route to improving the solubility and activity. Thus, compounds G24 and G26 provide attractive starting templates for the optimization of antitubercular agents that act by targeting DNA gyrase.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Adenosina Trifosfatases , Trifosfato de Adenosina , Antituberculosos/química , Antituberculosos/farmacologia , DNA Girase/química , Humanos , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Tuberculose/tratamento farmacológico
4.
J Chem Inf Model ; 62(24): 6508-6518, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35994014

RESUMO

Mycobacterium tuberculosis protein kinase B (PknB) is essential to mycobacterial growth and has received considerable attention as an attractive target for novel anti-tuberculosis drug development. Here, virtual screening, validated by biological assays, was applied to select candidate inhibitors of M. tuberculosis PknB from the Specs compound library (www.specs.net). Fifteen compounds were identified as hits and selected for in vitro biological assays, of which three indoles (2, AE-848/42799159; 4, AH-262/34335013; 10, AP-124/40904362) inhibited growth of M. tuberculosis H37Rv with minimal inhibitory concentrations of 6.2, 12.5, and 6.2 µg/mL, respectively. Two compounds, 2 and 10, inhibited M. tuberculosis PknB activity in vitro, with IC50 values of 14.4 and 12.1 µM, respectively, suggesting this to be the likely basis of their anti-tubercular activity. In contrast, compound 4 displayed anti-tuberculosis activity against M. tuberculosis H37Rv but showed no inhibition of PknB activity (IC50 > 128 µM). We hypothesize that hydrolysis of its ethyl ester to a carboxylate moiety generates an active species that inhibits other M. tuberculosis enzymes. Molecular dynamics simulations of modeled complexes of compounds 2, 4, and 10 bound to M. tuberculosis PknB indicated that compound 4 has a lower affinity for M. tuberculosis PknB than compounds 2 and 10, as evidenced by higher calculated binding free energies, consistent with experiment. Compounds 2 and 10 therefore represent candidate inhibitors of M. tuberculosis PknB that provide attractive starting templates for optimization as anti-tubercular agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Antituberculosos/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Fosforilação
5.
Comput Biol Med ; 152: 106434, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543008

RESUMO

2-trans enoyl-acyl carrier protein reductase (InhA) is a promising target for developing novel chemotherapy agents for tuberculosis, and their inhibitory effects on InhA activity were widely investigated by the physicochemical experiments. However, the reason for the wide range of their inhibitory effects induced by similar agents was not explained by only the difference in their chemical structures. In our previous molecular simulations, a series of heteroaryl benzamide derivatives were selected as candidate inhibitors against InhA, and their binding properties with InhA were investigated to propose novel derivatives with higher binding affinity to InhA. In the present study, we extended the simulations for a series of 4-hydroxy-2-pyridone derivatives to search widely for more potent inhibitors against InhA. Using ab initio fragment molecular orbital (FMO) calculations, we elucidated the specific interactions between InhA residues and the derivatives at an electronic level and highlighted key interactions between InhA and the derivatives. The FMO results clearly indicated that the most potent inhibitor has strong hydrogen bonds with the backbones of Tyr158, Thr196, and NADH of InhA. This finding may provide informative structural concepts for designing novel 4-hydroxy-2-pyridone derivatives with higher binding affinity to InhA. Our previous and present molecular simulations could provide important guidelines for the rational design of more potent InhA inhibitors.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Tuberculose/tratamento farmacológico , Desenho de Fármacos , Proteínas de Bactérias , Relação Estrutura-Atividade
6.
J Biomol Struct Dyn ; : 1-14, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063158

RESUMO

Tuberculosis (TB), the second leading infectious killer, causes serious public health problems worldwide. To develop novel anti-TB agents, many biochemical studies have targeted the subunit B of DNA gyrase (GyrB), which captures a second DNA segment and responses for ATP hydrolysis. Here, we investigated specific interactions between GyrB residues and existing pyrrolamide derivatives at an electronic level using ab initio fragment molecular orbital (FMO) calculations and designed potent inhibitors against GyrB. The evaluated binding affinities between GyrB and pyrrolamides were confirmed to be consistent with the IC50 values obtained from previous experiments. Thus, we employed the most potent pyrrolamide (compound 1) as a lead compound and proposed novel pyrrolamide derivatives. The specific interactions between GyrB and these derivatives were investigated using molecular mechanic optimizations and FMO calculations. The results revealed that our proposed derivatives had strong hydrogen bonds with Asp79 and Arg141 and exhibited electrostatic interactions with Glu56 and Ile84 of GyrB. In addition, the binding affinity between GyrB and compound 1 was enhanced significantly by the replacement at the R3 site of compound 1. The present results may provide structural concepts for the rational design of potent GyrB inhibitors as anti-TB agents.Communicated by Ramaswamy H. Sarma.

7.
J Mol Graph Model ; 115: 108231, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667143

RESUMO

Serine/threonine protein kinase B (PknB) is essential to Mycobacterium tuberculosis (M. tuberculosis) cell division and metabolism and a potential anti-tuberculosis drug target. Here we apply Hologram Quantitative Structure Activity Relationship (HQSAR) and three-dimensional QSAR (Comparative Molecular Similarity Indices Analysis (CoMSIA)) methods to investigate structural requirements for PknB inhibition by a series of previously described quinazoline derivatives. PknB binding of quinazolines was evaluated by molecular dynamics (MD) simulations of the catalytic domain and binding energies calculated by Molecular Mechanics/Poisson Boltzmann Surface Area (MM-PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) methods. Evaluation of a training set against experimental data showed both HQSAR and CoMSIA models to reliably predict quinazoline binding to PknB, and identified the quinazoline core and overall hydrophobicity as the major contributors to affinity. Calculated binding energies also agreed with experiment, and MD simulations identified hydrogen bonds to Glu93 and Val95, and hydrophobic interactions with Gly18, Phe19, Gly20, Val25, Thr99 and Met155, as crucial to PknB binding. Based on these results, additional quinazolines were designed and evaluated in silico, with HQSAR and CoMSIA models identifying sixteen compounds, with predicted PknB binding superior to the template, whose activity spectra and physicochemical, pharmacokinetic, and anti-M. tuberculosis properties were assessed. Compound, D060, bearing additional ortho- and meta-methyl groups on its R2 substituent, was superior to template regarding PknB inhibition and % caseum fraction unbound, and equivalent in other aspects, although predictions identified hepatotoxicity as a likely issue with the quinazoline series. These data provide a structural basis for rational design of quinazoline derivatives with more potent PknB inhibitory activity as candidate anti-tuberculosis agents.


Assuntos
Mycobacterium tuberculosis , Relação Quantitativa Estrutura-Atividade , Antituberculosos/química , Antituberculosos/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA