Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nucleic Acids Res ; 49(4): 2240-2254, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503262

RESUMO

Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.


Assuntos
Processamento Alternativo , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Análise de Sequência de RNA , Animais , Proteínas de Ligação a DNA/genética , Éxons , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculos/metabolismo , Músculos/fisiologia , Distrofia Miotônica/metabolismo , Oligonucleotídeos Antissenso , Proteínas de Ligação a RNA/genética , Regeneração , Transcriptoma , Expansão das Repetições de Trinucleotídeos
2.
Muscle Nerve ; 66(3): 336-339, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35426155

RESUMO

INTRODUCTION/AIMS: Remote study visits (RSVs) are emerging as important tools for clinical research. We tested the feasibility of using RSVs to evaluate patients with myotonic dystrophy type 1 (DM1), including remote quantitative assessment of muscle function, and we assessed correlations of remote assessments with patient-reported function. METHODS: Twenty three subjects with DM1 were consented remotely. Toolkits containing a tablet computer, grip dynamometer, and spirometer were shipped to participants. The tablets were loaded with software for video-conferencing and questionnaires about functional impairment, patient experience with technology, and willingness to participate in future remote studies. Grip strength, forced vital capacity, peak cough flow, timed-up-and-go (TUG), and grip myotonia (hand opening time) were determined during RSVs. We assessed correlations of remote assessments with patient-reported outcomes of muscle function and with CTG repeat size. RESULTS: All 23 subjects completed RSVs. 95% of participants were able to complete all components of the remote study. All toolkit components were returned upon completion. Grip strength and TUG demonstrated moderate to strong correlations with self-reported inventories of upper and lower extremity impairment, respectively (ρ = 0.7 and ρ = -0.52). A total of 91% of subjects expressed interest in participating in future RSVs. DISCUSSION: Results of this study support the feasibility of using portable devices and video-conferencing for remote collection of patient-reported outcomes and quantitative assessment of muscle function in DM1.


Assuntos
Miotonia , Distrofia Miotônica , Estudos de Viabilidade , Força da Mão , Humanos , Músculo Esquelético , Distrofia Miotônica/diagnóstico
3.
Muscle Nerve ; 66(4): 508-512, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778789

RESUMO

INTRODUCTION/AIMS: Disease progression in myotonic dystrophy (DM) is marked by milestone events when functional thresholds are crossed. DM type 2 (DM2) is considered less severe than DM type 1 (DM1), but it is unknown whether this applies uniformly to all features. We compared the age-dependent risk for milestone events in DM1 and DM2 and tested for associations with age of onset and sex. METHODS: We studied a large cohort of adult participants in a national registry of DM1 and DM2. Using annual surveys from participants, we ascertained milestone events for motor involvement (use of cane, walker, ankle brace, wheelchair, or ventilatory device), systemic involvement (diabetes, pacemaker, cancer), loss of employment due to DM, and death. RESULTS: Mean follow-up of registry participants (929 DM1 and 222 DM2 patients) was 7 years. Disability and motor milestones occurred at earlier ages in DM1 than in DM2. In contrast, the risk of diabetes was higher and tended to occur earlier in DM2 (hazard ratio [HR], 0.56; P ≤ .001). In DM1, the milestone events tended to occur earlier, and life expectancy was reduced, when symptoms began at younger ages. In DM1, men were at greater risk for disability (HR, 1.34; P ≤ .01), use of ankle braces (HR, 1.41; P = .02), and diabetes (HR, 2.2; P ≤ .0001), whereas women were at greater risk for needing walkers (HR, 0.68; P = .001) or malignancy (HR, 0.66; P ≤ .01). DISCUSSION: Milestone events recorded through registries can be used to assess long-term impact of DM in large cohorts. Except for diabetes, the age-related risk of milestone events is greater in DM1 than in DM2.


Assuntos
Diabetes Mellitus Tipo 2 , Distrofia Miotônica , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Distrofia Miotônica/diagnóstico , Sistema de Registros
4.
Muscle Nerve ; 65(5): 560-567, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35179228

RESUMO

INTRODUCTION/AIMS: Myotonic dystrophy type 1 (DM1) is known to affect cognitive function, but the best methods to assess central nervous system involvement in multicenter studies have not been determined. In this study our primary aim was to evaluate the potential of computerized cognitive tests to assess cognition in DM1. METHODS: We conducted a prospective, longitudinal, observational study of 113 adults with DM1 at six sites. Psychomotor speed, attention, working memory, and executive functioning were assessed at baseline, 3 months, and 12 months using computerized cognitive tests. Results were compared with assessments of muscle function and patient reported outcomes (PROs), including the Myotonic Dystrophy Health Index (MDHI) and the 5-dimension EuroQol (EQ-5D-5L) questionnaire. RESULTS: Based on intraclass correlation coefficients, computerized cognitive tests had moderate to good reliability for psychomotor speed (0.76), attention (0.82), working memory speed (0.79), working memory accuracy (0.65), and executive functioning (0.87). Performance at baseline was lowest for working memory accuracy (P < .0001). Executive function performance improved from baseline to 3 months (P < .0001), without further changes over 1 year. There was a moderate correlation between poorer executive function and larger CTG repeat size (r = -0.433). There were some weak associations between PROs and cognitive performance. DISCUSSION: Computerized tests of cognition are feasible in multicenter studies of DM1. Poor performance was exhibited in working memory, which may be a useful variable in clinical trials. Learning effects may have contributed to the improvement in executive functioning. The relationship between PROs and cognitive impairment in DM1 requires further study.


Assuntos
Distrofia Miotônica , Adulto , Cognição , Computadores , Humanos , Estudos Longitudinais , Distrofia Miotônica/complicações , Distrofia Miotônica/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes
5.
Mol Cell ; 56(2): 311-322, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25263597

RESUMO

Inhibition of muscleblind-like (MBNL) activity due to sequestration by microsatellite expansion RNAs is a major pathogenic event in the RNA-mediated disease myotonic dystrophy (DM). Although MBNL1 and MBNL2 bind to nascent transcripts to regulate alternative splicing during muscle and brain development, another major binding site for the MBNL protein family is the 3' untranslated region of target RNAs. Here, we report that depletion of Mbnl proteins in mouse embryo fibroblasts leads to misregulation of thousands of alternative polyadenylation events. HITS-CLIP and minigene reporter analyses indicate that these polyadenylation switches are a direct consequence of MBNL binding to target RNAs. Misregulated alternative polyadenylation also occurs in skeletal muscle in a mouse polyCUG model and human DM, resulting in the persistence of neonatal polyadenylation patterns. These findings reveal an additional developmental function for MBNL proteins and demonstrate that DM is characterized by misregulation of pre-mRNA processing at multiple levels.


Assuntos
Processamento Alternativo/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Poliadenilação/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Repetições de Microssatélites/genética , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Ligação Proteica , Interferência de RNA , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Proteínas de Ligação a RNA/metabolismo
6.
Hum Mol Genet ; 28(8): 1312-1321, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561649

RESUMO

Myotonic dystrophy (dystrophia myotonica, DM) is a multi-systemic disease caused by expanded CTG or CCTG microsatellite repeats. Characterized by symptoms in muscle, heart and central nervous system, among others, it is one of the most variable diseases known. A major pathogenic event in DM is the sequestration of muscleblind-like proteins by CUG or CCUG repeat-containing RNAs transcribed from expanded repeats, and differences in the extent of MBNL sequestration dependent on repeat length and expression level may account for some portion of the variability. However, many other cellular pathways are reported to be perturbed in DM, and the severity of specific disease symptoms varies among individuals. To help understand this variability and facilitate research into DM, we generated 120 RNASeq transcriptomes from skeletal and heart muscle derived from healthy and DM1 biopsies and autopsies. A limited number of DM2 and Duchenne muscular dystrophy samples were also sequenced. We analyzed splicing and gene expression, identified tissue-specific changes in RNA processing and uncovered transcriptome changes strongly correlating with muscle strength. We created a web resource at http://DMseq.org that hosts raw and processed transcriptome data and provides a lightweight, responsive interface that enables browsing of processed data across the genome.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Distrofia Miotônica/genética , Adulto , Processamento Alternativo/genética , Sequência de Bases , Feminino , Perfilação da Expressão Gênica/métodos , Coração/fisiologia , Humanos , Masculino , Repetições de Microssatélites/genética , Músculo Esquelético/fisiologia , Distrofia Miotônica/metabolismo , Análise de Componente Principal , RNA/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 115(16): 4234-4239, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610297

RESUMO

Expansions of simple sequence repeats, or microsatellites, have been linked to ∼30 neurological-neuromuscular diseases. While these expansions occur in coding and noncoding regions, microsatellite sequence and repeat length diversity is more prominent in introns with eight different trinucleotide to hexanucleotide repeats, causing hereditary diseases such as myotonic dystrophy type 2 (DM2), Fuchs endothelial corneal dystrophy (FECD), and C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Here, we test the hypothesis that these GC-rich intronic microsatellite expansions selectively trigger host intron retention (IR). Using DM2, FECD, and C9-ALS/FTD as examples, we demonstrate that retention is readily detectable in affected tissues and peripheral blood lymphocytes and conclude that IR screening constitutes a rapid and inexpensive biomarker for intronic repeat expansion disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Distrofia Endotelial de Fuchs/genética , Íntrons/genética , Distrofia Miotônica/genética , Composição de Bases , Biomarcadores , Humanos , Linfócitos/química , Músculo Esquelético/química , Miocárdio/química , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade , Análise Serial de Tecidos
8.
Nucleic Acids Res ; 46(1): e1, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29036654

RESUMO

Cellular accumulation of repetitive RNA occurs in several dominantly-inherited genetic disorders. Expanded CUG, CCUG or GGGGCC repeats are expressed in myotonic dystrophy type 1 (DM1), myotonic dystrophy type 2 (DM2), or familial amyotrophic lateral sclerosis, respectively. Expanded repeat RNAs (ER-RNAs) exert a toxic gain-of-function and are prime therapeutic targets in these diseases. However, efforts to quantify ER-RNA levels or monitor knockdown are confounded by stable structure and heterogeneity of the ER-RNA tract and background signal from non-expanded repeats. Here, we used a thermostable group II intron reverse transcriptase (TGIRT-III) to convert ER-RNA to cDNA, followed by quantification on slot blots. We found that TGIRT-III was capable of reverse transcription (RTn) on enzymatically synthesized ER-RNAs. By using conditions that limit cDNA synthesis from off-target sequences, we observed hybridization signals on cDNA slot blots from DM1 and DM2 muscle samples but not from healthy controls. In transgenic mouse models of DM1 the cDNA slot blots accurately reflected the differences of ER-RNA expression across different transgenic lines, and showed therapeutic reductions in skeletal and cardiac muscle, accompanied by improvements of the DM1-associated splicing defects. TGIRT-III was also active on CCCCGG- and GGGGCC-repeats, suggesting that ER-RNA analysis is feasible for several repeat expansion disorders.


Assuntos
Esclerose Lateral Amiotrófica/genética , Íntrons/genética , Distrofia Miotônica/genética , DNA Polimerase Dirigida por RNA/genética , RNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Sequência de Bases , Eletroforese Capilar , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Humanos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Miotônica/metabolismo , Splicing de RNA , DNA Polimerase Dirigida por RNA/metabolismo , Temperatura
9.
PLoS Genet ; 12(9): e1006316, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27681373

RESUMO

Alternative splicing is a regulated process that results in expression of specific mRNA and protein isoforms. Alternative splicing factors determine the relative abundance of each isoform. Here we focus on MBNL1, a splicing factor misregulated in the disease myotonic dystrophy. By altering the concentration of MBNL1 in cells across a broad dynamic range, we show that different splicing events require different amounts of MBNL1 for half-maximal response, and respond more or less steeply to MBNL1. Motifs around MBNL1 exon 5 were studied to assess how cis-elements mediate the MBNL1 dose-dependent splicing response. A framework was developed to estimate MBNL concentration using splicing responses alone, validated in the cell-based model, and applied to myotonic dystrophy patient muscle. Using this framework, we evaluated the ability of individual and combinations of splicing events to predict functional MBNL concentration in human biopsies, as well as their performance as biomarkers to assay mild, moderate, and severe cases of DM.

10.
Biochemistry ; 57(6): 907-911, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29334465

RESUMO

Toxic RNAs containing expanded trinucleotide repeats are the cause of many neuromuscular disorders, one being myotonic dystrophy type 1 (DM1). DM1 is triggered by CTG-repeat expansion in the 3'-untranslated region of the DMPK gene, resulting in a toxic gain of RNA function through sequestration of MBNL1 protein, among others. Herein, we report the development of a relatively short miniPEG-γ peptide nucleic acid probe, two triplet repeats in length, containing terminal pyrene moieties, that is capable of binding rCUG repeats in a sequence-specific and selective manner. The newly designed probe can discriminate the pathogenic rCUGexp from the wild-type transcript and disrupt the rCUGexp-MBNL1 complex. The work provides a proof of concept for the development of relatively short nucleic acid probes for targeting RNA-repeat expansions associated with DM1 and other related neuromuscular disorders.


Assuntos
Distrofia Miotônica/metabolismo , Ácidos Nucleicos Peptídicos/metabolismo , Sondas RNA/metabolismo , RNA/metabolismo , Expansão das Repetições de Trinucleotídeos , Sequência de Bases , Sítios de Ligação , Humanos , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , Miotonina Proteína Quinase/metabolismo , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , RNA/química , RNA/genética , Sondas RNA/química , Sondas RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Biochemistry ; 57(14): 2094-2108, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29562132

RESUMO

We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template. In the absence of an RNA target, they self-deactivate by undergoing an intramolecular reaction to form cyclic products, rendering them inactive for further binding. The work has implications for the design of ultrashort nucleic acid ligands for targeting rCAG-repeat expansion associated with Huntington's disease and a number of other related neuromuscular and neurodegenerative disorders.


Assuntos
Doença de Huntington , RNA/química , Expansão das Repetições de Trinucleotídeos , Humanos , Ligantes , RNA/genética
12.
Hum Mol Genet ; 25(19): 4328-4338, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27522499

RESUMO

Myotonic dystrophy type 1 (DM1) is a genetic disorder in which dominant-active DM protein kinase (DMPK) transcripts accumulate in nuclear foci, leading to abnormal regulation of RNA processing. A leading approach to treat DM1 uses DMPK-targeting antisense oligonucleotides (ASOs) to reduce levels of toxic RNA. However, basal levels of DMPK protein are reduced by half in DM1 patients. This raises concern that intolerance for further DMPK loss may limit ASO therapy, especially since mice with Dmpk gene deletion reportedly show cardiac defects and skeletal myopathy. We re-examined cardiac and muscle function in mice with Dmpk gene deletion, and studied post-maturity knockdown using Dmpk-targeting ASOs in mice with heterozygous deletion. Contrary to previous reports, we found no effect of Dmpk gene deletion on cardiac or muscle function, when studied on two genetic backgrounds. In heterozygous knockouts, the administration of ASOs reduced Dmpk expression in cardiac and skeletal muscle by > 90%, yet survival, electrocardiogram intervals, cardiac ejection fraction and muscle strength remained normal. The imposition of cardiac stress by pressure overload, or muscle stress by myotonia, did not unmask a requirement for DMPK. Our results support the feasibility and safety of using ASOs for post-transcriptional silencing of DMPK in muscle and heart.


Assuntos
Terapia Genética , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Miotonina Proteína Quinase/biossíntese , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Modelos Animais de Doenças , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/genética , Oligonucleotídeos Antissenso/genética , RNA/antagonistas & inibidores , RNA/genética
13.
Muscle Nerve ; 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29328504

RESUMO

INTRODUCTION: When preparing for clinical trials in myotonic dystrophy type-1 (DM1), it is important that researchers develop and identify patient-reported outcome measures with good measurement properties. METHODS: Fifty-two DM1 patients enrolled in 2 clinical studies completed the Myotonic Dystrophy Health Index (MDHI), 36-Item Short Form Health Survey (version 2; SF-36v2), Individualized Neuromuscular Quality of Life questionnaire (INQoL), and a questionnaire comparing the relevance, usability, overall preference, and perceived responsiveness of each measure. The associations between instrument scores and physical function, genetic test results, and employment status were examined. RESULTS: The MDHI was preferred over the INQoL in 13 of 13 areas and was preferred over the SF-36v2 in 9 of 13 areas. The MDHI was the only score that was associated with participant employment status, CTG repeat length, and the 3 measurements of clinical function. DISCUSSION: The MDHI correlates well with physical function and is viewed favorably by participants in DM1 clinical studies. Muscle Nerve, 2018.

14.
Nature ; 488(7409): 111-5, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859208

RESUMO

Antisense oligonucleotides (ASOs) hold promise for gene-specific knockdown in diseases that involve RNA or protein gain-of-function effects. In the hereditary degenerative disease myotonic dystrophy type 1 (DM1), transcripts from the mutant allele contain an expanded CUG repeat and are retained in the nucleus. The mutant RNA exerts a toxic gain-of-function effect, making it an appropriate target for therapeutic ASOs. However, despite improvements in ASO chemistry and design, systemic use of ASOs is limited because uptake in many tissues, including skeletal and cardiac muscle, is not sufficient to silence target messenger RNAs. Here we show that nuclear-retained transcripts containing expanded CUG (CUG(exp)) repeats are unusually sensitive to antisense silencing. In a transgenic mouse model of DM1, systemic administration of ASOs caused a rapid knockdown of CUG(exp) RNA in skeletal muscle, correcting the physiological, histopathologic and transcriptomic features of the disease. The effect was sustained for up to 1 year after treatment was discontinued. Systemically administered ASOs were also effective for muscle knockdown of Malat1, a long non-coding RNA (lncRNA) that is retained in the nucleus. These results provide a general strategy to correct RNA gain-of-function effects and to modulate the expression of expanded repeats, lncRNAs and other transcripts with prolonged nuclear residence.


Assuntos
Núcleo Celular/genética , Inativação Gênica , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , RNA/antagonistas & inibidores , RNA/genética , Alelos , Animais , Sequência de Bases , Núcleo Celular/efeitos dos fármacos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Miotônica/patologia , Distrofia Miotônica/fisiopatologia , Miotonina Proteína Quinase , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , RNA/metabolismo , RNA Longo não Codificante , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Ribonuclease H/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Expansão das Repetições de Trinucleotídeos/genética
15.
Hum Mol Genet ; 24(7): 2035-48, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25504044

RESUMO

Myotonic dystrophy type 1 (DM1), the most prevalent muscular dystrophy in adults, is characterized by progressive muscle wasting and multi-systemic complications. DM1 is the prototype for disorders caused by RNA toxicity. Currently, no therapies exist. Here, we identify that fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor receptor super-family, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and in tissues from DM1 patients, and that its expression correlates with severity of muscle pathology. This is associated with downstream signaling through the NF-κB pathways. In mice with RNA toxicity, genetic deletion of Fn14 results in reduced muscle pathology and better function. Importantly, blocking TWEAK/Fn14 signaling with an anti-TWEAK antibody likewise improves muscle histopathology and functional outcomes in affected mice. These results reveal new avenues for therapeutic development and provide proof of concept for a novel therapeutic target for which clinically available therapy exists to potentially treat muscular dystrophy in DM1.


Assuntos
Distrofia Miotônica/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Adulto , Animais , Anticorpos/administração & dosagem , Citocina TWEAK , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/efeitos dos fármacos , Receptor de TWEAK , Inibidores do Fator de Necrose Tumoral , Fatores de Necrose Tumoral/genética
16.
Nucleic Acids Res ; 43(6): 3318-31, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25753670

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominant multisystemic disorder caused by expansion of CTG triplet repeats in 3'-untranslated region of DMPK gene. The pathomechanism of DM1 is driven by accumulation of toxic transcripts containing expanded CUG repeats (CUG(exp)) in nuclear foci which sequester several factors regulating RNA metabolism, such as Muscleblind-like proteins (MBNLs). In this work, we utilized very short chemically modified antisense oligonucleotides composed exclusively of locked nucleic acids (all-LNAs) complementary to CUG repeats, as potential therapeutic agents against DM1. Our in vitro data demonstrated that very short, 8- or 10-unit all-LNAs effectively bound the CUG repeat RNA and prevented the formation of CUG(exp)/MBNL complexes. In proliferating DM1 cells as well as in skeletal muscles of DM1 mouse model the all-LNAs induced the reduction of the number and size of CUG(exp) foci and corrected MBNL-sensitive alternative splicing defects with high efficacy and specificity. The all-LNAs had low impact on the cellular level of CUG(exp)-containing transcripts and did not affect the expression of other transcripts with short CUG repeats. Our data strongly indicate that short all-LNAs complementary to CUG repeats are a promising therapeutic tool against DM1.


Assuntos
Processamento Alternativo , Distrofia Miotônica/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos/uso terapêutico , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Mutantes/genética , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Miotonina Proteína Quinase/genética , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Expansão das Repetições de Trinucleotídeos
17.
Muscle Nerve ; 53(2): 183-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26044513

RESUMO

INTRODUCTION: The Myotonic Dystrophy Health Index (MDHI) is a disease-specific patient-reported outcome measure. Here, we examine the associations between the MDHI and other measures of disease burden in a cohort of individuals with myotonic dystrophy type-1 (DM1). METHODS: We conducted a cross-sectional study of 70 patients with DM1. We examined the associations between MDHI total and subscale scores and scores from other clinical tests. Participants completed assessments of strength, myotonia, motor and respiratory function, ambulation, and body composition. Participants also provided blood samples, underwent physician evaluations, and completed other patient-reported outcome measures. RESULTS: MDHI total and subscale scores were strongly associated with muscle strength, myotonia, motor function, and other clinical measures. CONCLUSIONS: Patient-reported health status, as measured by the MDHI, is associated with alternative measures of clinical health. These results support the use of the MDHI as a valid tool to measure disease burden in DM1 patients.


Assuntos
Distrofia Miotônica/diagnóstico , Distrofia Miotônica/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde/métodos , Índice de Gravidade de Doença , Absorciometria de Fóton , Adulto , Idoso , Creatina Quinase/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular/fisiologia , Exame Neurológico , Estatística como Assunto , Adulto Jovem
18.
Nucleic Acids Res ; 42(10): 6591-602, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24799433

RESUMO

Myotonic dystrophy type 1 (DM1) is a dominantly inherited neuromuscular disorder resulting from expression of RNA containing an expanded CUG repeat (CUG(exp)). The pathogenic RNA is retained in nuclear foci. Poly-(CUG) binding proteins in the Muscleblind-like (MBNL) family are sequestered in foci, causing misregulated alternative splicing of specific pre-mRNAs. Inhibitors of MBNL1-CUG(exp) binding have been shown to restore splicing regulation and correct phenotypes in DM1 models. We therefore conducted a high-throughput screen to identify novel inhibitors of MBNL1-(CUG)12 binding. The most active compound was lomofungin, a natural antimicrobial agent. We found that lomofungin undergoes spontaneous dimerization in DMSO, producing dilomofungin, whose inhibition of MBNL1-(CUG)12 binding was 17-fold more potent than lomofungin itself. However, while dilomofungin displayed the desired binding characteristics in vitro, when applied to cells it produced a large increase of CUG(exp) RNA in nuclear foci, owing to reduced turnover of the CUG(exp) transcript. By comparison, the monomer did not induce CUG(exp) accumulation in cells and was more effective at rescuing a CUG(exp)-induced splicing defect. These results support the feasibility of high-throughput screens to identify compounds targeting toxic RNA, but also demonstrate that ligands for repetitive sequences may have unexpected effects on RNA decay.


Assuntos
Fenazinas/farmacologia , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Regiões 3' não Traduzidas , Processamento Alternativo/efeitos dos fármacos , Dimerização , Humanos , Fenazinas/química , Fenazinas/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Sequências Repetitivas de Ácido Nucleico
19.
PLoS Genet ; 9(12): e1003866, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367268

RESUMO

Slipped-strand DNAs, formed by out-of-register mispairing of repeat units on complementary strands, were proposed over 55 years ago as transient intermediates in repeat length mutations, hypothesized to cause at least 40 neurodegenerative diseases. While slipped-DNAs have been characterized in vitro, evidence of slipped-DNAs at an endogenous locus in biologically relevant tissues, where instability varies widely, is lacking. Here, using an anti-DNA junction antibody and immunoprecipitation, we identify slipped-DNAs at the unstable trinucleotide repeats (CTG)n•(CAG)n of the myotonic dystrophy disease locus in patient brain, heart, muscle and other tissues, where the largest expansions arise in non-mitotic tissues such as cortex and heart, and are smallest in the cerebellum. Slipped-DNAs are shown to be present on the expanded allele and in chromatinized DNA. Slipped-DNAs are present as clusters of slip-outs along a DNA, with each slip-out having 1-100 extrahelical repeats. The allelic levels of slipped-DNA containing molecules were significantly greater in the heart over the cerebellum (relative to genomic equivalents of pre-IP input DNA) of a DM1 individual; an enrichment consistent with increased allelic levels of slipped-DNA structures in tissues having greater levels of CTG instability. Surprisingly, this supports the formation of slipped-DNAs as persistent mutation products of repeat instability, and not merely as transient mutagenic intermediates. These findings further our understanding of the processes of mutation and genetic variation.


Assuntos
Anticorpos Antinucleares/genética , DNA/genética , Distrofia Miotônica/genética , Expansão das Repetições de Trinucleotídeos/genética , Cromatina/genética , DNA/química , Humanos , Mutação , Distrofia Miotônica/patologia , Conformação de Ácido Nucleico , Distribuição Tecidual
20.
J Pharmacol Exp Ther ; 355(2): 329-40, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26330536

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults. DM1 is caused by an expanded CTG repeat in the 3'-untranslated region of DMPK, the gene encoding dystrophia myotonica protein kinase (DMPK). Antisense oligonucleotides (ASOs) containing 2',4'-constrained ethyl-modified (cEt) residues exhibit a significantly increased RNA binding affinity and in vivo potency relative to those modified with other 2'-chemistries, which we speculated could translate to enhanced activity in extrahepatic tissues, such as muscle. Here, we describe the design and characterization of a cEt gapmer DMPK ASO (ISIS 486178), with potent activity in vitro and in vivo against mouse, monkey, and human DMPK. Systemic delivery of unformulated ISIS 486718 to wild-type mice decreased DMPK mRNA levels by up to 90% in liver and skeletal muscle. Similarly, treatment of either human DMPK transgenic mice or cynomolgus monkeys with ISIS 486178 led to up to 70% inhibition of DMPK in multiple skeletal muscles and ∼50% in cardiac muscle in both species. Importantly, inhibition of DMPK was well tolerated and was not associated with any skeletal muscle or cardiac toxicity. Also interesting was the demonstration that the inhibition of DMPK mRNA levels in muscle was maintained for up to 16 and 13 weeks post-treatment in mice and monkeys, respectively. These results demonstrate that cEt-modified ASOs show potent activity in skeletal muscle, and that this attractive therapeutic approach warrants further clinical investigation to inhibit the gain-of-function toxic RNA underlying the pathogenesis of DM1.


Assuntos
Distrofia Miotônica/tratamento farmacológico , Miotonina Proteína Quinase/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Animais , Linhagem Celular , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/enzimologia , Miotonina Proteína Quinase/antagonistas & inibidores , Miotonina Proteína Quinase/genética , Oligonucleotídeos/química , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA