Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 74, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395929

RESUMO

Due to its unique structure, articular cartilage has limited abilities to undergo self-repair after injury. Additionally, the repair of articular cartilage after injury has always been a difficult problem in the field of sports medicine. Previous studies have shown that the therapeutic use of mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) has great potential for promoting cartilage repair. Recent studies have demonstrated that most transplanted stem cells undergo apoptosis in vivo, and the apoptotic EVs (ApoEVs) that are subsequently generated play crucial roles in tissue repair. Additionally, MSCs are known to exist under low-oxygen conditions in the physiological environment, and these hypoxic conditions can alter the functional and secretory properties of MSCs as well as their secretomes. This study aimed to investigate whether ApoEVs that are isolated from adipose-derived MSCs cultured under hypoxic conditions (hypoxic apoptotic EVs [H-ApoEVs]) exert greater effects on cartilage repair than those that are isolated from cells cultured under normoxic conditions. Through in vitro cell proliferation and migration experiments, we demonstrated that H-ApoEVs exerted enhanced effects on stem cell proliferation, stem cell migration, and bone marrow derived macrophages (BMDMs) M2 polarization compared to ApoEVs. Furthermore, we utilized a modified gelatine matrix/3D-printed extracellular matrix (ECM) scaffold complex as a carrier to deliver H-ApoEVs into the joint cavity, thus establishing a cartilage regeneration system. The 3D-printed ECM scaffold provided mechanical support and created a microenvironment that was conducive to cartilage regeneration, and the H-ApoEVs further enhanced the regenerative capacity of endogenous stem cells and the immunomodulatory microenvironment of the joint cavity; thus, this approach significantly promoted cartilage repair. In conclusion, this study confirmed that a ApoEVs delivery system based on a modified gelatine matrix/3D-printed ECM scaffold together with hypoxic preconditioning enhances the functionality of stem cell-derived ApoEVs and represents a promising approach for promoting cartilage regeneration.


Assuntos
Cartilagem Articular , Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Hidrogéis , Alicerces Teciduais/química , Gelatina , Células-Tronco , Hipóxia
2.
J Nanobiotechnology ; 21(1): 269, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574546

RESUMO

Successful biomaterial implantation requires appropriate immune responses. Macrophages are key mediators involved in this process. Currently, exploitation of the intrinsic properties of biomaterials to modulate macrophages and immune responses is appealing. In this study, we prepared hydrophilic nanofibers with an aligned topography by incorporating polyethylene glycol and polycaprolactone using axial electrospinning. We investigated the effect of the nanofibers on macrophage behavior and the underlying mechanisms. With the increase of hydrophilicity of aligned nanofibers, the inflammatory gene expression of macrophages adhering to them was downregulated, and M2 polarization was induced. We further presented clear evidence that the inflammasome NOD-like receptor thermal protein domain associated protein 3 (NLRP3) was the cellular sensor by which macrophages sense the biomaterials, and it acted as a regulator of the macrophage-mediated response to foreign bodies and implant integration. In vivo, we showed that the fibers shaped the implant-related immune microenvironment and ameliorated peritendinous adhesions. In conclusion, our study demonstrated that hydrophilic aligned nanofibers exhibited better biocompatibility and immunological properties.


Assuntos
Inflamassomos , Nanofibras , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Interações Hidrofóbicas e Hidrofílicas
3.
Mikrochim Acta ; 190(11): 430, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804452

RESUMO

The low detection sensitivity of lateral-flow immunochromatography assay (LFIA) based on spherical gold nanoparticle (AuNP) limits its wide applications. In the present study, AuNP dimers with strong plasma scattering and robust signal output were synthesized via the Ag ion soldering (AIS) strategy and used as labeled probes in LFIA to boost the sensitivity without any extra operation process and equipment. The established LFIA exhibited high sensitivity with a limit of detection (LOD) of 2.0 × 102 TCID50/mL for PEDV, which provides 50 times higher sensitivity than commercial LFIA based on spherical colloidal gold. In addition, the AuNP dimer-based LFIA showed strong specificity, good reproducibility, high stability, and good accordance to reverse transcription polymer chain reaction (RT-PCR) when detecting 109 clinical samples. Thus, the AuNP dimers is a promising probe for LFIA and the developed AuNP dimer-based LFIA is suitable for the rapid detection of PEDV in the field.


Assuntos
Nanopartículas Metálicas , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Ouro , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Doenças dos Suínos/diagnóstico , Nanopartículas Metálicas/química , Cromatografia de Afinidade , Polímeros
4.
Sensors (Basel) ; 23(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37960506

RESUMO

The relative position of the orchard robot to the rows of fruit trees is an important parameter for achieving autonomous navigation. The current methods for estimating the position parameters between rows of orchard robots obtain low parameter accuracy. To address this problem, this paper proposes a machine vision-based method for detecting the relative position of orchard robots and fruit tree rows. First, the fruit tree trunk is identified based on the improved YOLOv4 model; second, the camera coordinates of the tree trunk are calculated using the principle of binocular camera triangulation, and the ground projection coordinates of the tree trunk are obtained through coordinate conversion; finally, the midpoints of the projection coordinates of different sides are combined, the navigation path is obtained by linear fitting with the least squares method, and the position parameters of the orchard robot are obtained through calculation. The experimental results show that the average accuracy and average recall rate of the improved YOLOv4 model for fruit tree trunk detection are 5.92% and 7.91% higher, respectively, than those of the original YOLOv4 model. The average errors of heading angle and lateral deviation estimates obtained based on the method in this paper are 0.57° and 0.02 m. The method can accurately calculate heading angle and lateral deviation values at different positions between rows and provide a reference for the autonomous visual navigation of orchard robots.

5.
J Nanobiotechnology ; 20(1): 25, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991615

RESUMO

BACKGROUND: The regeneration and repair of articular cartilage remains a major challenge for clinicians and scientists due to the poor intrinsic healing of this tissue. Since cartilage injuries are often clinically irregular, tissue-engineered scaffolds that can be easily molded to fill cartilage defects of any shape that fit tightly into the host cartilage are needed. METHOD: In this study, bone marrow mesenchymal stem cell (BMSC) affinity peptide sequence PFSSTKT (PFS)-modified chondrocyte extracellular matrix (ECM) particles combined with GelMA hydrogel were constructed. RESULTS: In vitro experiments showed that the pore size and porosity of the solid-supported composite scaffolds were appropriate and that the scaffolds provided a three-dimensional microenvironment supporting cell adhesion, proliferation and chondrogenic differentiation. In vitro experiments also showed that GelMA/ECM-PFS could regulate the migration of rabbit BMSCs. Two weeks after implantation in vivo, the GelMA/ECM-PFS functional scaffold system promoted the recruitment of endogenous mesenchymal stem cells from the defect site. GelMA/ECM-PFS achieved successful hyaline cartilage repair in rabbits in vivo, while the control treatment mostly resulted in fibrous tissue repair. CONCLUSION: This combination of endogenous cell recruitment and chondrogenesis is an ideal strategy for repairing irregular cartilage defects.


Assuntos
Condrogênese/efeitos dos fármacos , Matriz Extracelular Descelularizada , Hidrogéis , Oligopeptídeos , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Coelhos , Engenharia Tecidual/métodos
6.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890919

RESUMO

As the end execution tool of agricultural robots, the manipulator directly determines whether the grasping task can be successfully completed. The human hand can adapt to various objects and achieve stable grasping, which is the highest goal for manipulator design and development. Thus, this study combines a multi-sensor fusion tactile glove to simulate manual grasping, explores the mechanism and characteristics of the human hand, and formulates rational grasping plans. According to the shape and size of fruits and vegetables, the grasping gesture library is summarized to facilitate the matching of optimal grasping gestures. By analyzing inter-finger curvature correlations and inter-joint pressure correlations, we investigated the synergistic motion characteristics of the human hand. In addition, the force data were processed by the wavelet transform algorithms and then the thresholds for sliding detection were set to ensure robust grasping. The acceleration law under the interaction with the external environment during grasping was also discussed, including stable movement, accidental collision, and placement of the target position. Finally, according to the analysis and summary of the manual gripping mechanism, the corresponding pre-gripping planning was designed to provide theoretical guidance and ideas for the gripping of robots.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Dedos , Mãos , Força da Mão , Humanos
7.
J Bone Miner Metab ; 39(6): 974-983, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34212247

RESUMO

INTRODUCTION: Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. It is essential to develop therapeutic strategies to combat the bone loss occurring in people afflicted with disuse atrophy on earth as well as in astronauts in space, especially during prolonged missions. Although several drugs have been demonstrated for treating postmenopausal osteoporosis or bone-related diseases, their effects on microgravity-induced bone loss are still unclear. MATERIALS AND METHODS: Here, we employed the hindlimb-unloading (HLU) tail suspension model and compared the preventive efficiencies of five agents including alendronate (ALN), raloxifene (Rox), teriparatide (TPTD), anti-murine RANKL monoclonal antibody (anti-RANKL) and proteasome inhibitor bortezomib (Bzb) on mechanical unloading-induced bone loss. Bone mineral density (BMD) was measured by quantitative computed tomography. The osteoblastic and osteoclastic activity were measured by serum ELISA, histology analysis, and histomorphometric analysis. RESULTS: Compared to the control, ALN and anti-RANKL antibody could restore bone mass close to sham levels by inhibiting bone resorption. Bzb could increase the whole bone mass and strength by inhibiting bone resorption and promoting bone formation simultaneously. Meanwhile, Rox did not affect bone loss caused by HLU. TPTD stimulated cortical bone formation but the total bone mass was not increased significantly. CONCLUSIONS: We demonstrated for the first time that anti-RANKL antibody and Bzb had a positive effect on preventing mechanical unloading-induced bone loss. This finding puts forward the potential use of anti-RANKL and Bzb on bone loss therapies or prophylaxis of astronauts in spaceflight.


Assuntos
Reabsorção Óssea , Teriparatida , Animais , Anticorpos Monoclonais , Densidade Óssea , Reabsorção Óssea/tratamento farmacológico , Bortezomib , Humanos , Camundongos
8.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(7): 889-895, 2024 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-39013829

RESUMO

Objective: To summarize the classic and latest treatment techniques for localized knee cartilage lesions in clinical practice and create a new comprehensive clinical decision-making process. Methods: The advantages and limitations of various treatment methods for localized knee cartilage lesions were summarized by extensive review of relevant literature at home and abroad in recent years. Results: Currently, there are various surgical methods for treating localized knee cartilage injuries in clinical practice, each with its own pros and cons. For patients with cartilage injuries less than 2 cm 2 and 2-4 cm 2 with bone loss are recommended to undergo osteochondral autograft (OAT) and osteochondral allograft (OCA) surgeries. For patients with cartilage injuries less than 2 cm 2 and 2-4 cm 2 without bone loss had treatment options including bone marrow-based techniques (micro-fracture and ogous matrix induced chondrogenesis), autologous chondrocyte implantation (ACI)/matrix-induced ACI, particulated juvenile allograft cartilage (PJAC), OAT, and OCA. For patients with cartilage injuries larger than 4 cm 2 with bone loss were recommended to undergo OCA. For patients with cartilage injuries larger than 4 cm 2 without bone loss, treatment options included ACI/matrix-induced ACI, OAT, and PJAC. Conclusion: There are many treatment techniques available for localized knee cartilage lesions. Treatment strategy selection should be based on the size and location of the lesion, the extent of involvement of the subchondral bone, and the level of evidence supporting each technique in the literature.


Assuntos
Cartilagem Articular , Condrócitos , Traumatismos do Joelho , Articulação do Joelho , Transplante Autólogo , Humanos , Cartilagem Articular/lesões , Cartilagem Articular/cirurgia , Condrócitos/transplante , Traumatismos do Joelho/cirurgia , Articulação do Joelho/cirurgia , Transplante Ósseo/métodos , Transplante Homólogo , Aloenxertos , Engenharia Tecidual/métodos , Procedimentos de Cirurgia Plástica/métodos
9.
ACS Biomater Sci Eng ; 9(8): 5015-5027, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37489848

RESUMO

The implantation of neural electrodes usually induces acute and chronic inflammation, which can result in the formation of glial scars encapsulating the implanted electrodes and the loss of neurons near the active electrode sites. Local presentation of anti-inflammatory drugs or neural protective factors has been evidenced as an effective strategy to modulate inflammatory responses and promote electrode-neuron integration. Here, a novel delivery system for the simultaneous presentation of both anti-inflammatory drugs (dexamethasone, Dex) and nerve-growth-promoting factors (nerve growth factor, NGF) from the electrode sites was developed via layer-structured carbon nanotubes and conductive polymers. The modified electrodes exhibited higher charge storage capacitance and lower electrochemical impedance compared to unmodified electrodes and electrodes coated with polypyrrole/Dex. Dex released from the functional coating under controlled electrochemical stimulation was able to inhibit the lipopolysaccharide-induced secretion or mRNA transcription of inflammatory cytokines, including nitric oxide, TNF-α, and IL-6 in RAW264.7 cells, and control the activation of cultured astrocytes. In addition, the functional coatings did not show a toxic effect on PC12 cells and primary neural cells but exhibited promoted activities on the adhesion, growth, and neurite extension of neural cells.

10.
Biomater Sci ; 11(8): 2759-2774, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36810435

RESUMO

Meniscus injury has a limited ability to heal itself and often results in the progression to osteoarthritis. After a meniscus injury, there is an obvious acute or chronic inflammatory response in the articular cavity, which is not conducive to tissue regeneration. M2 macrophages are involved in tissue repair and remodeling. Regenerative medicine strategies for tissue regeneration by enhancing the phenotypic ratio of M2 : M1 macrophages have been demonstrated in a variety of tissues. However, there are no relevant reports in the field of meniscus tissue regeneration. In this study, we confirmed that sodium tanshinone IIA sulfonate (STS) could transform macrophages from M1 to M2 polarization. STS protects meniscal fibrochondrocytes (MFCs) against the effects of macrophage conditioned medium (CM). Moreover, STS attenuates interleukin (IL)-1ß-induced inflammation, oxidative stress, apoptosis, and extracellular matrix (ECM) degradation in MFCs, possibly by inhibiting the interleukin-1 receptor-associated kinase 4 (IRAK4)/TNFR-associated factor 6 (TRAF6)/nuclear factor-kappaB (NF-κB) signaling pathway. An STS loaded polycaprolactone (PCL)-meniscus extracellular matrix (MECM) based hydrogel hybrid scaffold was fabricated. PCL provides mechanical support, the MECM based hydrogel provides a microenvironment conducive to cell proliferation and differentiation, and STS is used to drive M2 polarization and protect MFCs against the effects of inflammatory stimuli, thus providing an immune microenvironment conducive to regeneration. The results of subcutaneous implantation in vivo showed that hybrid scaffolds could induce M2 polarization in the early stage. In addition, the hybrid scaffolds seeded with MFCs could achieve good meniscus regeneration and chondroprotective effects in rabbits.


Assuntos
Hidrogéis , Menisco , Animais , Coelhos , Hidrogéis/metabolismo , Macrófagos , Inflamação/metabolismo , Fenótipo
11.
Front Bioeng Biotechnol ; 11: 1115312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890920

RESUMO

Tendon injuries often result in significant pain and disability and impose severe clinical and financial burdens on our society. Despite considerable achievements in the field of regenerative medicine in the past several decades, effective treatments remain a challenge due to the limited natural healing capacity of tendons caused by poor cell density and vascularization. The development of tissue engineering has provided more promising results in regenerating tendon-like tissues with compositional, structural and functional characteristics comparable to those of native tendon tissues. Tissue engineering is the discipline of regenerative medicine that aims to restore the physiological functions of tissues by using a combination of cells and materials, as well as suitable biochemical and physicochemical factors. In this review, following a discussion of tendon structure, injury and healing, we aim to elucidate the current strategies (biomaterials, scaffold fabrication techniques, cells, biological adjuncts, mechanical loading and bioreactors, and the role of macrophage polarization in tendon regeneration), challenges and future directions in the field of tendon tissue engineering.

12.
Biomater Res ; 27(1): 7, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739446

RESUMO

BACKGROUND: In recent years, there has been significant research progress on in situ articular cartilage (AC) tissue engineering with endogenous stem cells, which uses biological materials or bioactive factors to improve the regeneration microenvironment and recruit more endogenous stem cells from the joint cavity to the defect area to promote cartilage regeneration. METHOD: In this study, we used ECM alone as a bioink in low-temperature deposition manufacturing (LDM) 3D printing and then successfully fabricated a hierarchical porous ECM scaffold incorporating GDF-5. RESULTS: Comparative in vitro experiments showed that the 7% ECM scaffolds had the best biocompatibility. After the addition of GDF-5 protein, the ECM scaffolds significantly improved bone marrow mesenchymal stem cell (BMSC) migration and chondrogenic differentiation. Most importantly, the in vivo results showed that the ECM/GDF-5 scaffold significantly enhanced in situ cartilage repair. CONCLUSION: In conclusion, this study reports the construction of a new scaffold based on the concept of in situ regeneration, and we believe that our findings will provide a new treatment strategy for AC defect repair.

13.
Mater Today Bio ; 19: 100549, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36756208

RESUMO

Improving the poor microenvironment in the joint cavity has potential for treating cartilage injury, and mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos), which can modulate cellular behavior, are becoming a new cell-free therapy for cartilage repair. Here, we used acellular cartilage extracellular matrix (ACECM) to prepare 3D scaffolds and 2D substrates by low-temperature deposition modeling (LDM) and tape casting. We aimed to investigate whether MSC-Exos cultured on scaffolds of different dimensions could improve the poor joint cavity microenvironment caused by cartilage injury and to explore the related mechanisms. In vitro experiments showed that exosomes derived from MSCs cultured on three-dimensional (3D) scaffolds (3D-Exos) had increased efficiency. In short-term animal experiments, compared with exosomes derived from MSCs cultured in a two-dimensional (2D) environment (2D-Exos), 3D-Exos had a stronger ability to regulate the joint cavity microenvironment. Long-term animal studies confirmed the therapeutic efficacy of 3D-Exos over 2D-Exos. Thus, 3D-Exos were applied in the rat knee osteochondral defect model after adsorption in the micropores of the scaffold and combined with subsequent articular cavity injections, and they showed a stronger cartilage repair ability. These findings provide a new strategy for repairing articular cartilage damage. Furthermore, miRNA sequencing indicated that the function of 3D-Exos may be associated with high expression of miRNAs. Thus, our study provides valuable insights for the design of 3D-Exos to promote cartilage regeneration.

14.
Colloids Surf B Biointerfaces ; 213: 112410, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35176603

RESUMO

Conducting polymer has been directly polymerized around living neural cells or in the cortex with the aim of creating an intimate contact between implantable electrical devices and electrogenetic cells. The long term cellular effect after conductive polymer coating, a critical issue for practical applications, has not been reported. In this study, poly(3,4-ethylenedioxythiophene) PEDOT was directly polymerized around the living primary neural and PC12 cells under varying current densities, potentials and charge-balanced current pulses. The cell morphology, nuclei evolution, and cell viability post PEDOT polymerization were studied at different time points. The aim of this study was to investigate the immediate and long-term cellular response towards in-situ polymerization of conductive polymers and to provide experimental information on the feasibility of this technique in practical applications.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Condutividade Elétrica , Neurônios/fisiologia , Polimerização , Ratos
15.
Adv Mater ; 34(43): e2207275, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36082539

RESUMO

Developing reactive oxygen species (ROS)-scavenging nanostructures to protect and regulate stem cells has emerged as an intriguing strategy for promoting tissue regeneration, especially in trauma microenvironments or refractory wounds. Here, an electronic modulated metal oxide is developed via Mn atom substitutions in Co3 O4 nanocrystalline (Mn-Co3 O4 ) for highly efficient and multifaceted catalytic ROS-scavenging to reverse the fates of mesenchymal stem cells (MSCs) in oxidative-stress microenvironments. Benefiting from the atomic Mn-substitution and charge transfer from Mn to Co, the Co site in Mn-Co3 O4 displays an increased ratio of Co2+ /Co3+ and improved redox properties, thus enhancing its intrinsic and broad-spectrum catalytic ROS-scavenging activities, which surpasses most of the currently reported metal oxides. Consequently, the Mn-Co3 O4 can efficiently protect the MSCs from ROS attack and rescue their functions, including adhesion, spreading, proliferation, and osteogenic differentiation. This work not only establishes an efficient material for catalytic ROS-scavenging in stem-cell-based therapeutics but also provides a new avenue to design biocatalytic metal oxides via modulation of electronic structure.


Assuntos
Osteogênese , Óxidos , Espécies Reativas de Oxigênio/metabolismo , Óxidos/química , Células-Tronco/metabolismo , Eletrônica
16.
Biomater Res ; 26(1): 52, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199125

RESUMO

Osteoarthritis (OA) is a degenerative joint disease that is common among the middle-aged and older populations, causes patients to experience recurrent pain in their joints and negatively affects their quality of life. Currently, therapeutic options for patients with OA consist of medications to alleviate pain and treat the symptoms; however, due to typically poor outcomes, patients with advanced OA are unlikely to avoid joint replacement. In recent years, several studies have linked disrupted homeostasis of the joint cavity microenvironment to the development of OA. Recently, extracellular vesicles (EVs) have received increasing attention in the field of OA. EVs are natural nano-microcarrier materials with unique biological activity that are produced by cells through paracrine action. They are composed of lipid bilayers that contain physiologically active molecules, such as nucleic acids and proteins. Moreover, EVs may participate in local and distal intercellular and intracellular communication. EVs have also recently been shown to influence OA development by regulating biochemical factors in the OA microenvironmental. In this article, we first describe the microenvironment of OA. Then, we provide an overview of EVs, summarize the main types used for the treatment of OA, and describe their mechanisms. Next, we review clinical studies using EVs for OA treatment. Finally, the specific mechanism underlying the application of miRNA-enriched EVs in OA therapy is described.

17.
Biomaterials ; 291: 121888, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403324

RESUMO

Inferior healing and peritendinous adhesions are the major clinical problems following Achilles tendon injury, leading to impaired motor function and an increased risk of re-rupture. These complications are presumed to be inextricably linked to inflammation and fibroscar formation. Here, microRNA29a is identified as a promising therapeutic target for tendon injury through the cross-regulation of the immune response and matrix remodeling. MiR29a-LNPs were successfully prepared by microfluidic technology. They are then loaded into the core-shell nanofibers to achieve local delivery in the injured tendon, where the shell layer is composed of PELA for anti-adhesion. Our studies reveal that miR29a regulates collagen synthesis and NF-κB activation in tenocytes, and promotes macrophage polarization by inhibiting the inflammasome pathway. In vivo studies of the Achilles tendon-rupture model indicate the best repair in the miR29a group, as evidenced by superior collagen composition and alignment, higher mechanical strength, and better functional recovery. In conclusion, a functionalized anti-adhesive membrane that promotes nascent tendon matrix remodeling and improves the regenerative immune microenvironment is developed for the treatment of tendon injury.


Assuntos
Nanofibras , Traumatismos dos Tendões , Humanos , Tendões , Traumatismos dos Tendões/terapia , Imunidade
18.
Acta Biomater ; 140: 23-42, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896634

RESUMO

The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite , Doenças das Cartilagens/metabolismo , Diferenciação Celular/genética , Condrócitos , Condrogênese , Humanos , Osteoartrite/patologia , Engenharia Tecidual
19.
ACS Appl Bio Mater ; 4(7): 5556-5565, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006733

RESUMO

Neural electrodes have been developed for the diagnosis and treatment of stroke, sensory deficits, and neurological disorders based on the electrical stimulation of nerve tissue and recording of neural electrical activity. A low interface impedance and large active surface area for charge transfer and intimate contact between neurons and the electrode are critical to obtain high-quality neural signal and effective stimulation without causing damage to both tissue and electrode. In this study, a nanostructured poly(3,4-ethylenedioxythiophene) (PEDOT) coating with lots of long protrusions was created via a one-step electrochemical polymerization from a dichloromethane solution without any rigid or soft templates. The nanostructures on the PEDOT coating were basically formed by intertwined PEDOT nanofibers, which further enhanced the active surface area. The fuzzy PEDOT-modified microelectrodes exhibited an impedance as low as 1 kΩ at 1 kHz, which is much lower than those produced from aqueous 3,4-ethylenedioxythiophene (EDOT) solution, and it was comparable with PEDOT films or composites created from/with template materials. Also, more than 150 times larger charge storage capacity density was obtained compared to the unmodified microelectrode. An in vitro biocompatibility test performed on PC12 cells and primary cells suggested that the PEDOT coatings support cell adhesion, growth, and neurite extension. These results suggest the great potential of the nanostructured PEDOT coating as an electroactive and biosafe intimate contact between the implanted neural electrode and neurons.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Nanofibras , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Microeletrodos , Neurônios , Polímeros , Ratos
20.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(2): 227-233, 2021 Feb 15.
Artigo em Chinês | MEDLINE | ID: mdl-33624479

RESUMO

OBJECTIVE: To summarize the expression and role of CD146 in mesenchymal stem cells (MSCs). METHODS: The literature related to CD146 at home and abroad were extensively consulted, and the CD146 expression in MSCs and its function were summarized and analyzed. RESULTS: CD146 is a transmembrane protein that mediates the adhesion of cells to cells and extracellular matrix, and is expressed on the surface of various MSCs. More and more studies have shown that CD146 + MSCs have superior cell properties such as greater proliferation, differentiation, migration, and immune regulation abilities than CD146 - or unsorted MSCs, and the application of CD146 + MSCs in the treatment of specific diseases has also achieved better results. CD146 is also involved in mediating a variety of cellular signaling pathways, but whether it plays the same role in MSCs remains to be demonstrated by further experiments. CONCLUSION: The utilization of CD146 + MSCs for tissue regeneration will be conducive to improving the therapeutic effect of MSCs.


Assuntos
Células-Tronco Mesenquimais , Antígeno CD146 , Diferenciação Celular , Matriz Extracelular , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA