Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 52(6): 2924-2941, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197240

RESUMO

Nitric oxide (NO) plays an essential role as signaling molecule in regulation of eukaryotic biomineralization, but its role in prokaryotic biomineralization is unknown. Magnetospirillum gryphiswaldense MSR-1, a model strain for studies of prokaryotic biomineralization, has the unique ability to form magnetosomes (magnetic organelles). We demonstrate here that magnetosome biomineralization in MSR-1 requires the presence of NsrRMg (an NO sensor) and a certain level of NO. MSR-1 synthesizes endogenous NO via nitrification-denitrification pathway to activate magnetosome formation. NsrRMg was identified as a global transcriptional regulator that acts as a direct activator of magnetosome gene cluster (MGC) and nitrification genes but as a repressor of denitrification genes. Specific levels of NO modulate DNA-binding ability of NsrRMg to various target promoters, leading to enhancing expression of MGC genes, derepressing denitrification genes, and repressing nitrification genes. These regulatory functions help maintain appropriate endogenous NO level. This study identifies for the first time the key transcriptional regulator of major MGC genes, clarifies the molecular mechanisms underlying NsrR-mediated NO signal transduction in magnetosome formation, and provides a basis for a proposed model of the role of NO in the evolutionary origin of prokaryotic biomineralization processes.


Assuntos
Proteínas de Bactérias , Magnetossomos , Magnetospirillum , Proteínas de Bactérias/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo
2.
Chem Rev ; 122(24): 17479-17646, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36240299

RESUMO

Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.


Assuntos
Alcenos , Alcenos/química
3.
Anal Bioanal Chem ; 416(1): 141-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934249

RESUMO

In this study, two mutant strains, TBC and TBC+, able to biosynthesize a novel functional magnetosome-nanobody (Nb), were derived from the magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1. The magnetosome-Nbs biosynthesized by TBC+ containing multi-copies of the Nb gene had a higher binding ability to an environmental pollutant, tetrabromobisphenol A (TBBPA), than those biosynthesized by TBC containing only one copy of the Nb gene. The magnetosome-Nbs from TBC+ can effectively bind to TBBPA in solutions with high capacity without being affected by a broad range of NaCl and methanol concentrations as well as pH. Therefore, a magnetosome-Nb-based enzyme-linked immunosorbent assay (ELISA) was developed and optimized for the detection of TBBPA, yielding a half-maximum signal inhibition concentration of 0.23 ng/mL and a limit of detection of 0.025 ng/mL. The assay was used to detect TBBPA in spiked river water samples, giving average recoveries between 90 and 120% and coefficients of variation of 2.5-6.3%. The magnetosome-Nb complex could be reused 4 times in ELISA without affecting the performance of the assay. Our results demonstrate the potential of magnetosome-Nbs produced by TBC+ as cost-effective and environment-friendly reagents for immunoassays to detect small molecules in environmental waters.


Assuntos
Magnetossomos , Magnetossomos/metabolismo , Água , Ensaio de Imunoadsorção Enzimática , Proteínas de Bactérias/química
4.
J Nanobiotechnology ; 20(1): 364, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933359

RESUMO

BACKGROUND: Magnetosomes (BMPs) are organelles of magnetotactic bacteria (MTB) that are responsible for mineralizing iron to form magnetite. In addition, BMP is an ideal biomaterial that is widely used in bio- and nano-technological applications, such as drug delivery, tumor detection and therapy, and immunodetection. The use of BMPs to create multifunctional nanocomposites would further expand the range of their applications. RESULTS: In this study, we firstly demonstrate that the extracted BMP can remineralize in vitro when it is exposed to AgNO3 solution, the silver ions (Ag+) were transported into the BMP biomembrane (MM) and mineralized into a silver crystal on one crystal plane of Fe3O4. Resulting in the rapid synthesis of an Ag-Fe3O4 hybrid BMP (BMP-Ag). The synergy between the biomembrane, Fe3O4 crystal, and unmineralized iron enabled the remineralization of BMPs at an Ag+ concentration ≥ 1.0 mg mL-1. The BMP-Ag displayed good biocompatibility and antibacterial activity. At a concentration of 2.0 mg/mL, the BMP-Ag and biomembrane removed Ag-Fe3O4 NPs inhibited the growth of gram-negative and gram-positive bacteria. Thus using BMP-Ag as a wound dressing can effectively enhance the contraction of infected wounds. CONCLUSIONS: This study represents the first successful attempt to remineralize organelles ex vivo, realizing the biosynthesis of hybrid BMP and providing an important advancement in the synthesis technology of multifunctional biological nanocomposites.


Assuntos
Magnetossomos , Óxido Ferroso-Férrico/química , Bactérias Gram-Negativas , Ferro/química , Magnetossomos/química , Prata/química
5.
J Nanobiotechnology ; 19(1): 27, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468141

RESUMO

BACKGROUND: Magnetic nanoparticles such as magnetosomes modified with antibodies allow a high probability of their interaction with targets of interest. Magnetosomes biomineralized by magnetotactic bacteria are in homogeneous nanoscale size and have crystallographic structure, and high thermal and colloidal stability. Camelidae derived nanobodies (Nbs) are small in size, thermal stable, highly water soluble, easy to produce, and fusible with magnetosomes. We aimed to functionalize Nb-magnetosomes for the analysis of the insecticide fipronil. RESULTS: Three recombinant magnetotactic bacteria (CF, CF+ , and CFFF) biomineralizing magnetosomes with different abundance of Nbs displayed on the surface were constructed. Compared to magnetosomes from the wild type Magnetospirillum gryphiswaldense MSR-1, all of the Nb-magnetosomes biosynthesized by strains CF, CF+ , and CFFF showed a detectable level of binding capability to fipronil-horseradish peroxidase (H2-HRP), but none of them recognized free fipronil. The Nb-magnetosomes from CFFF were oxidized with H2O2 or a glutathione mixture consisting of reduced glutathione and oxidized glutathione in vitro and their binding affinity to H2-HRP was decreased, whereas that to free fipronil was enhanced. The magnetosomes treated with the glutathione mixture were employed to develop an enzyme-linked immunosorbent assay for the detection of fipronil in water samples, with average recoveries in a range of 78-101%. CONCLUSIONS: The economical and environmental-friendly Nb-magnetosomes biomineralized by the bacterial strain MSR-1 can be potentially applied to nanobody-based immunoassays for the detection of fipronil or nanobody-based assays in general.


Assuntos
Inseticidas/química , Magnetossomos , Magnetospirillum/metabolismo , Pirazóis/química , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Fermentação , Glutationa , Peróxido de Hidrogênio/metabolismo , Imunoensaio , Magnetospirillum/genética , Anticorpos de Cadeia Única
6.
Anal Chem ; 92(1): 1114-1121, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31763820

RESUMO

Bacterial magnetic particles (BMPs) are an attractive carrier material for immunoassays because of their nanoscale size, dispersal ability, and membrane-bound structure. Antitetrabromobisphenol-A (TBBPA) nanobodies (Nbs) in the form of monovalence (Nb1), bivalence (Nb2), and trivalence (Nb3) were biotinylated and immobilized onto streptavidin (SA)-derivatized BMPs to construct the complexes of BMP-SA-Biotin-Nb1, -Nb2, and -Nb3, respectively. An increasing order of binding capability of BMP-SA-Biotin-Nb1, -Nb2, and -Nb3 to TBBPA was observed. These complexes showed high resilience to temperature (90 °C), methanol (100%), high pH (12), and strong ionic strength (1.37 M NaCl). A BMP-SA-Biotin-Nb3-based enzyme linked immunosorbent assay (ELISA) for TBBPA dissolved in methanol was developed, showing a half-maximum inhibition concentration (IC50) of 0.42 ng mL-1. TBBPA residues in landfill leachate, sewage, and sludge samples determined by this assay were in a range of

Assuntos
Anticorpos Imobilizados/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Magnetossomos/química , Bifenil Polibromatos/análise , Anticorpos de Domínio Único/imunologia , Poluentes Químicos da Água/análise , Sequência de Aminoácidos , Óxido Ferroso-Férrico/química , Retardadores de Chama/análise , Ferro/química , Limite de Detecção , Magnetospirillum/química , Bifenil Polibromatos/imunologia , Esgotos/análise , Sulfetos/química , Poluentes Químicos da Água/imunologia
7.
J Nanobiotechnology ; 17(1): 37, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841927

RESUMO

BACKGROUND: Magnetosomes (also called bacterial magnetic nanoparticles; BMPs) are biomembrane-coated nanoparticles synthesized by magnetotactic bacteria (MTB). Engineered BMPs fused to protein A (termed ∆F-BMP-FA) bind antibodies (Abs) automatically, and thus provide a series of potential advantages. However, no report so far has systematically evaluated functional applicability of genetically engineered BMPs. RESULTS: We evaluated properties of ∆F-BMP-FA, and developed/optimized culture methods for host strain Magnetospirillum gryphiswaldense ΔF-FA, ∆F-BMP-FA extraction conditions, conditions for Ab conjugation to ∆F-BMP-FA surface, and procedures for antigen detection using ∆F-BMP-FA/Ab complexes (termed BMP-A-Ab). Fed-batch culture for 36 h in a 42-L fermentor resulted in yields (dry weight) of 2.26 g/L for strain ΔF-FA and 62 mg/L for ∆F-BMP-FA. Optimal wash cycle number for ∆F-BMP-FA purification was seven, with magnetic separation following each ultrasonication step. Fusion of protein A to BMPs resulted in ordered arrangement of Abs on BMP surface. Linkage rate 962 µg Ab per mg ∆F-BMP-FA was achieved. BMP-A-Ab were tested for detection of pathogen (Vibrio parahaemolyticus; Vp) surface antigen and hapten (gentamicin sulfate). Maximal Vp capture rate for BMP-A-Ab was 90% (higher than rate for commercial immunomagnetic beads), and detection sensitivity was 5 CFU/mL. ∆F-BMP-FA also bound Abs from crude mouse ascites to form complex. Lowest gentamicin sulfate detection line for BMP-A-Ab was 0.01 ng/mL, 400-fold lower than that for double Ab sandwich ELISA, and gentamicin sulfate recovery rate for BMP-A-Ab was 93.2%. CONCLUSION: Our findings indicate that engineered BMPs such as ∆F-BMP-FA are inexpensive, eco-friendly alternatives to commercial immunomagnetic beads for detection or diagnostic immunoassays, and have high Ab-conjugation and antigen-adsorption capacity.


Assuntos
Nanopartículas de Magnetita/química , Magnetossomos/química , Magnetospirillum/química , Proteína Estafilocócica A/química , Animais , Anticorpos/química , Antígenos de Bactérias/análise , Reatores Biológicos , Ensaio de Imunoadsorção Enzimática , Gentamicinas/análise , Haptenos/análise , Limite de Detecção , Camundongos , Engenharia de Proteínas , Propriedades de Superfície , Vibrio parahaemolyticus/isolamento & purificação
8.
Anal Bioanal Chem ; 410(25): 6633-6642, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30066195

RESUMO

Variable domain of heavy chain antibody (nanobody, Nb) derived from camelids is an efficient reagent in monitoring environmental contaminants. Oriented conjugates of Nbs and bacterial magnetic particles (BMPs) provide new tools for the high-throughput immunoassay techniques. An anti-tetrabromobisphenol-A (TBBPA) Nb genetically integrated with an extra cysteine residue at the C terminus was immobilized onto BMPs enclosed within the protein membrane, using a heterobifunctional reagent N-succinimidyl-3-(2-pyridyldithiol) propionate, to form a solid BMP-Nb complex. A rapid and sensitive enzyme-linked immunosorbent assay (ELISA) based on the combination of BMP-Nb and T5-horseradish peroxidase was developed for the analysis of TBBPA, with a total assay time of 30 min and a half-maximum signal inhibition concentration (IC50) of 1.04 ng/mL in PBS (pH 10, 10% methanol and 0.137 moL/L NaCl). This assay can even be performed in 100% methanol, with an IC50 value of 44.3 ng/mL. This assay showed quantitative recoveries of TBBPA from spiked canal water (114-124%) and sediment (109-113%) samples at 1.0-10 ng/mL (or ng/g (dw)). TBBPA residues determined by this assay in real canal water samples were below the limit of detection (LOD) and in real sediments were between

Assuntos
Magnetismo , Bifenil Polibromatos/química , Bactérias/química , Bioensaio , Monitoramento Ambiental , Ensaio de Imunoadsorção Enzimática/métodos , Concentração Inibidora 50 , Limite de Detecção , Microscopia Eletrônica de Transmissão , Fatores de Tempo
9.
Environ Microbiol ; 16(2): 525-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23841906

RESUMO

Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.


Assuntos
Evolução Biológica , Ecossistema , Genoma Bacteriano , Magnetospirillum/genética , Adaptação Biológica/genética , Proteínas de Bactérias/genética , Hibridização Genômica Comparativa , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Ilhas Genômicas , Magnetossomos/genética , Magnetospirillum/fisiologia , Família Multigênica , Filogenia , Quinona Redutases/genética , Água do Mar/microbiologia , Simportadores/genética , Sintenia
10.
Food Chem X ; 22: 101523, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38911916

RESUMO

Engineered bacterial magnetic nanoparticles (BMPs) fused with protein A (BMP-PA) can bind antibodies, creating immunomagnetic beads that offer an attractive tool for targets screening. In the study, BMP-PA-IgG was formed by attaching broad-spectrum monoclonal antibodies against glucocorticoids (GCs) to BMP-PA. Immunomagnetic assay was developed for analysis of GCs, using the BMP-PA-IgG and hydrocortisone-horseradish peroxidase. The developed assay exhibited broad specificity for GCs, including hydrocortisone (HCS), betamethasone (BMS), dexamethasone (DMS), prednisolone (PNS), beclomethasone (BCMS), cortisone (CS), 6-α-methylprednisone (6-α-MPNS), and fludrocortisone acetate (HFCS), with half inhibitory concentrations (IC50) ranging from 0.88 to 6.57 ng/mL. The proposed assay showed average recoveries of HCS and DMS ranging from 75.6% to 105.2% in chicken and pork samples, which were correlated well with those obtained by LC-MS/MS. This study indicated that the integration of engineered immunomagnetic beads into immunoassay systems offer possibilities for the sensitive and selective detection of GCs.

11.
Org Biomol Chem ; 11(48): 8387-94, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24186619

RESUMO

Aldehydes can react with secondary amines to give α-amino acetals via the α-amination of aliphatic aldehydes catalyzed by iodine. The presence of an asymmetric hydroxylated center at the γ-position of the aldehyde was found to induce the stereoselective amino group. This method represents a stereoselective α-amination of γ-hydroxyaldehydes for the synthesis of syn-γ-hydroxy-α-amino acetals in good yields and reasonable diastereoselectivities under very mild conditions.


Assuntos
Acetais/síntese química , Aldeídos/química , Iodo/química , Acetais/química , Aldeídos/síntese química , Aminação , Aminas/síntese química , Aminas/química , Catálise , Oxirredução , Estereoisomerismo
12.
Org Lett ; 25(49): 8922-8926, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38057263

RESUMO

Oxidative amination for the installation of nitrogen functional molecules from nitrogen nucleophiles has always been a very challenging topic in organic synthesis. Here we report a novel conversion of different aldehydes with secondary amines for the synthesis of diversified α-amino ketones. This method can be achieved through oxidative rearrangement of an in situ-generated enamine intermediate promoted by commercially available sodium percarbonate. Furthermore, this one-pot process is also suitable for the functional modification of complex molecules.

13.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993437

RESUMO

Background: Protein downstream processing remains a challenge in protein production, especially in low yields of products, in spite of ensuring effective disruption of cell and separation of target proteins. It is complicated, expensive and time-consuming. Here, we report a novel nano-bio-purification system for producing recombinant proteins of interest with automatic purification from engineered bacteria. Results: This system employed a complete genetic engineering downstream processing platform for proteins at low expression levels, referred to as a genetically encoded magnetic platform (GEMP). GEMP consists of four elements as follows. (1) A truncated phage lambda lysis cassette (RRz/Rz1) is controllable for lysis of Magnetospirillum gryphiswaldense MSR-1 (host cell). (2) A surface-expressed nuclease (NucA) is to reduce viscosity of homogenate by hydrolyzing long chain nucleic acids. (3) A bacteriogenic magnetic nanoparticle, known as magnetosome, allows an easy separation system in a magnetic field. (4) An intein realizes abscission of products (nanobodies against tetrabromobisphenol A) from magnetosome. Conclusions: In this work, removal of most impurities greatly simplified the subsequent purification procedure. The system also facilitated the bioproduction of nanomaterials. The developed platform can substantially simplify industrial protein production and reduce its cost.

14.
Angew Chem Int Ed Engl ; 51(36): 9105-9, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22855029

RESUMO

The metal-free amination of different aldehydes is catalyzed by hypoiodite, which is generated by employing commercially available sodium percarbonate as the co-oxidant. This approach has several advantages: it is a metal-free oxidation that works under mild reaction conditions; furthermore, it has a wide substrate scope and does not give toxic by-products from the co-oxidant that is used.

15.
Adv Healthc Mater ; 11(14): e2200841, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35579102

RESUMO

Nanomaterials as T1 /T2 dual-mode magnetic resonance imaging (MRI) contrast agents have great potential in improving the accuracy of tumor diagnosis. Applications of such materials, however, are limited by the complicated chemical synthesis process and potential biosafety issues. In this study, the biosynthesis of manganese (Mn)-doped magnetosomes (MagMn) that not only can be used in T1 /T2 dual-mode MR imaging with self-confirmation for tumor detection, but also improve the photothermal conversion efficiency for MRI-guided photothermal therapy (PTT) is reported. The MagMn nanoparticles (NPs) are naturally produced through the biomineralization of magnetotactic bacteria by doping Mn into the ferromagnetic iron oxide crystals. In vitro and in vivo studies demonstrated that targeting peptides functionalized MagMn enhanced both T1 and T2 MRI signals in tumor tissue and significantly inhibited tumor growth by the further MRI-guided PTT. It is envisioned that the biosynthesized multifunctional MagMn nanoplatform may serve as a potential theranostic agent for cancer diagnosis and treatment.


Assuntos
Magnetossomos , Nanopartículas , Neoplasias , Meios de Contraste/química , Humanos , Imageamento por Ressonância Magnética/métodos , Manganês , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Terapia Fototérmica , Nanomedicina Teranóstica/métodos
16.
Chem Commun (Camb) ; 59(2): 223-226, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36484257

RESUMO

A transition-metal-free strategy regarding an iodine-sodium percarbonate catalysis to achieve the ortho-aminomethylation of phenols in aqueous media has been developed. This method can effectively broaden a wide range of phenols, tolerate sensitive functional groups, and achieve the late-stage functionalization of ten functional molecules that contain phenolic structures.


Assuntos
Iodo , Elementos de Transição , Fenóis/química , Catálise
17.
Nanomaterials (Basel) ; 12(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36432281

RESUMO

Magnetosomes (MAGs) extracted from magnetotactic bacteria are well-defined membrane-enveloped single-domain magnetic nanoparticles. Due to their superior magnetic and structural properties, MAGs constitute potential materials that can be manipulated via genetic and chemical engineering for use in biomedical and biotechnological applications. However, the long-term effects exerted by MAGs on cells are of concern in the context of in vivo applications. Meanwhile, it remains relatively unclear which mechanisms are employed by cells to process and degrade MAGs. Hence, a better understanding of MAGs' degradation and fundamental signal modulations occurring throughout this process is essential. In the current study, we investigated the potential actions of MAGs on endothelial cells over a 10-day period. MAGs were retained in cells and found to gradually gather in the lysosome-like vesicles. Meanwhile, iron-ion release was observed. Proteomics further revealed a potential cellular mechanism underlying MAGs degradation, in which a group of proteins associated with vesicle biogenesis, and lysosomal enzymes, which participate in protein hydrolysis and lipid degradation, were rapidly upregulated. Moreover, the released iron triggered the regulation of the iron metabolic profiles. However, given that the levels of cell oxidative damage were relatively stable, the released iron ions were handled by iron metabolic profiles and incorporated into normal metabolic routes. These results provide insights into the cell response to MAGs degradation that may improve their in vivo applications.

18.
Bioengineering (Basel) ; 9(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36004881

RESUMO

Biosynthesis provides a critical way to deal with global sustainability issues and has recently drawn increased attention. However, modifying biosynthesized magnetic nanoparticles by extraction is challenging, limiting its applications. Magnetotactic bacteria (MTB) synthesize single-domain magnetite nanocrystals in their organelles, magnetosomes (BMPs), which are excellent biomaterials that can be biologically modified by genetic engineering. Therefore, this study successfully constructed in vivo biotinylated BMPs in the MTB Magnetospirillum gryphiswaldense by fusing biotin carboxyl carrier protein (BCCP) with membrane protein MamF of BMPs. The engineered strain (MSR-∆F-BF) grew well and synthesized small-sized (20 ± 4.5 nm) BMPs and were cultured in a 42 L fermenter; the yield (dry weight) of cells and BMPs reached 8.14 g/L and 134.44 mg/L, respectively, approximately three-fold more than previously reported engineered strains and BMPs. The genetically engineered BMPs (BMP-∆F-BF) were successfully linked with streptavidin or streptavidin-labelled horseradish peroxidase and displayed better storage stability compared with chemically constructed biotinylated BMPs. This study systematically demonstrated the biosynthesis of engineered magnetic nanoparticles, including its construction, characterization, and production and detection based on MTB. Our findings provide insights into biomanufacturing multiple functional magnetic nanomaterials.

19.
Int J Nanomedicine ; 17: 665-680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185331

RESUMO

PURPOSE: Nanoparticles (NPs) decorated with functional ligands are promising candidates for cancer diagnosis and treatment. However, numerous studies have shown that chemically coupled targeting moieties on NPs lose their targeting capability in the biological milieu because they are shielded or covered by a "protein corona". Herein, we construct a functional magnetosome that recognizes and targets cancer cells even in the presence of protein corona. METHODS: Magnetosomes (BMPs) were extracted from magnetotactic bacteria, M. gryphiswaldense (MSR-1), and decorated with trastuzumab (TZ) via affibody (RA) and glutaraldehyde (GA). The engineered BMPs are referred to as BMP-RA-TZ and BMP-GA-TZ. Their capacities to combine HER2 were detected by ELISA, the quantity of plasma corona proteins was analyzed using LC-MS. The efficiencies of targeting SK-BR-3 were demonstrated by confocal laser scanning microscopy and flow cytometry. RESULTS: Both engineered BMPs contain up to ~0.2 mg TZ per mg of BMP, while the quantity of HER2 binding to BMP-RA-TZ is three times higher than that binding to BMP-GA-TZ. After incubation with normal human plasma or IgG-supplemented plasma, GA-TZ-containing BMPs have larger hydrated radii and more surface proteins in comparison with RA-TZ-containing BMPs. The TZ-containing BMPs all can be targeted to and internalized in the HER2-overexpressing breast cancer cell line SK-BR-3; however, their targeting efficiencies vary considerably: 50-75% for RA-TZ-containing BMPs and 9-19% for GA-TZ-containing BMPs. BMPs were incubated with plasma (100%) and cancer cells to simulate human in vivo environment. In this milieu, BMP-RA-TZ uptake efficiency of SK-BR-3 reaches nearly 80% (slightly lower than for direct interaction with BMP-RA-TZ), whereas the BMP-GA-TZ uptake efficiency is <17%. CONCLUSION: Application of the RA scaffold promotes and orients the arrangement of targeting ligands and reduces the shielding effect of corona proteins. This strategy improves the targeting capability and drug delivery of NP in a simulated in vivo milieu.


Assuntos
Magnetossomos , Preparações Farmacêuticas , Coroa de Proteína , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Magnetossomos/metabolismo , Coroa de Proteína/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia
20.
Int J Syst Evol Microbiol ; 61(Pt 1): 20-24, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20118284

RESUMO

An aerobic, Gram-negative, yellow-pigmented bacterial strain, designated 0533(T), was isolated from frozen soil from the China No. 1 glacier. Phylogenetic analysis of the 16S rRNA gene sequence demonstrated that strain 0533(T) was a member of the genus Flavobacterium and exhibited 97.1-98.7 % 16S rRNA sequence similarity with its nearest phylogenetic neighbours. Strain 0533(T) exhibited phenotypic and chemotaxonomic characteristics common to the genus Flavobacterium: menaquinone-6 (MK-6) was the predominant quinone and iso-C(15 : 0), C(17 : 1)ω6c, anteiso-C(15 : 0), iso-C(15 : 0) 3-OH, C(15 : 1)ω6c, iso-C(16 : 0) 3-OH, summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c), iso-C(15 : 1) G and iso-C(17 : 0) 3-OH were the major fatty acids (>5 %). The DNA G+C content was 32.5 mol%. On the basis of phenotypic and genotypic data, a novel species, Flavobacterium sinopsychrotolerans sp. nov., is proposed. The type strain is 0533(T) (=CGMCC 1.8704(T) =JCM 16398(T)).


Assuntos
Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Camada de Gelo/microbiologia , Composição de Bases , China , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Flavobacterium/química , Flavobacterium/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA