Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(6): 3468-3476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133640

RESUMO

BACKGROUND: The use of emulsion gels to protect and deliver probiotics has become an important topic in the food industry. This study used transglutaminase (TGase) to regulate ovalbumin (OVA) to prepare a novel emulsion gel. The effects of OVA concentration and the addition of TGase on the microstructure, rheological properties, water-holding capacity, and stability of the emulsion gels were investigated. RESULTS: With the addition of TGase and the increasing OVA, the particle size of the emulsion gels decreased significantly (P < 0.05). The gels with TGase exhibited greater water holding, hardness, and chewiness to some extent by forming a more uniform and stable system. After simulated digestion, the survival rate of Bifidobacterium lactis embedded in OVA emulsion gels improved significantly in comparison with the oil-water mixture as a result of the protective effect of the emulsion gel encapsulation. CONCLUSION: By increasing the OVA content and adding TGase, the rheological characteristics, stability, and encapsulation capability of the OVA emulsion gel could be enhanced, providing a theoretical basis for the use of emulsion gels to construct probiotic delivery systems. © 2023 Society of Chemical Industry.


Assuntos
Transglutaminases , Água , Ovalbumina , Emulsões/química , Transglutaminases/química , Géis/química , Reologia , Água/química , Bactérias
2.
BMC Neurol ; 17(1): 154, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789642

RESUMO

BACKGROUND: Uremic Encephalopathy (UE) is a neurological complication associated with acute or chronic renal failure. Imaging findings of UE may present involvement of the basal ganglia, cortical or subcortical regions, and white matter. We report a rare case of UE caused by neurogenic bladder with isolated brainstem involvement revealed by magnetic resonance imaging (MRI). Immediate therapy resulted in full recovery of neurological signs and changes on MRI. CASE PRESENTATION: A 14-year-old Han Chinese woman with a history of chronic renal failure caused by neurogenic bladder. On admission, she was unconscious and her pupils presented different sizes, while her vital signs were normal. MRI showed high signal in the dorsal pontine base and in the mid brain on fluid-attenuated inversion-recovery (FLAIR) imaging and on T2-weighted imaging while the signal was normal on diffusion-weighted images (DWI). Blood analysis revealed renal failure and acidosis. After urinary retention treatment and acidosis correction, the patient soon recovered. Follow-up MRI 2 months after the discharge revealed complete resolution of UE in the brainstem. CONCLUSION: We reported a rare case of a patient with UE that had unusual imaging manifestations for whom timely diagnosis and treatment assured recovery.


Assuntos
Encefalopatias/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Substância Branca
3.
Dent Mater J ; 42(1): 19-29, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36244739

RESUMO

After periodontal tissue injury, reconstruct soft tissue sealing around the tooth surface is of fundamental importance to treat periodontitis. Among multiple cell types, fibroblast plays a central role in reestablishing functional periodontium. To enhance fibroblast activity, a novel metal-organic framework-based nanoplatform is fabricated using mesoporous Prussian blue (MPB) nanoparticles to load baicalein (BA), named MPB-BA. Drug release test displayed sustained BA release of MPB-BA. Cell proliferation, transwell migration and wound healing tests revealed accelerated fibroblast proliferation and migration for the established MPB-BA nanoplatform. Moreover, vinculin immunofluorescence staining, western blot and quantitative real-time PCR analysis showed up-regulated vinculin protein and integrin α5 and integrin ß1 gene expressions for MPB-BA, suggesting improved cell adhesion. In addition, hematoxylin and eosin (H&E) and Masson trichromatic staining suggested superior anti-inflammatory and collagen fiber reconstruction effects for MPB-BA in a rat experimental periodontitis model in vivo. Our study may provide a promising strategy for the treatment of periodontitis.


Assuntos
Estruturas Metalorgânicas , Periodontite , Ratos , Animais , Vinculina/farmacologia , Estruturas Metalorgânicas/farmacologia , Cicatrização , Fibroblastos , Periodontite/tratamento farmacológico
4.
Bioact Mater ; 9: 428-445, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820581

RESUMO

Periodontitis is an inflammatory disease initiated by bacterial infection, developed by excessive immune response, and aggravated by high level of reactive oxygen species (ROS). Hence, herein, a versatile metal-organic framework (MOF)-based nanoplatform is prepared using mesoporous Prussian blue (MPB) nanoparticles to load BA, denoted as MPB-BA. The established MPB-BA nanoplatform serves as a shelter and reservoir for vulnerable immunomodulatory drug BA, which possesses antioxidant, anti-inflammatory and anti-bacterial effects. Thus, MPB-BA can exert its antioxidant, anti-inflammatory functions through scavenging intracellular ROS to switch macrophages from M1 to M2 phenotype so as to relieve inflammation. The underlying molecular mechanism lies in the upregulation of phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2) to scavenge ROS and subsequently inhibit the nuclear factor kappa-B (NF-κB) signal pathway. Moreover, MPB-BA also exhibited efficient photothermal antibacterial activity against periodontal pathogens under near-infrared (NIR) light irradiation. In vivo RNA sequencing results revealed the high involvement of both antioxidant and anti-inflammatory pathways after MPB-BA application. Meanwhile, micro-CT and immunohistochemical staining of p-Nrf2 and p-P65 further confirmed the superior therapeutic effects of MPB-BA than minocycline hydrochloride. This work may provide an insight into the treatment of periodontitis by regulating Nrf2/NF-κB signaling pathway through photothermal bioplatform-assisted immunotherapy.

5.
Biomater Sci ; 10(8): 2088-2089, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35352720

RESUMO

Correction for 'Hierarchical microgroove/nanopore topography regulated cell adhesion to enhance osseointegration around intraosseous implants in vivo' by Yujuan Tian et al., Biomater. Sci., 2022, 10, 560-580. DOI: 10.1039/D1BM01657A.

6.
Biomater Sci ; 10(2): 560-580, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34907409

RESUMO

Implant surface topography plays a crucial role in achieving successful implantation. Simple and controllable surface topographical modifications are considered a promising method to accelerate bone osseointegration for biomedical applications. Moreover, comprehension of the mechanism between surface topography and cell osteogenic differentiation is vital for the manipulation of these processes to promote bone tissue regeneration. In this study, we investigated the effects of implant surfaces with various sized hierarchical microgroove/nanopore topographies on cell adhesion, osteogenesis, and their underlying mechanism both in vitro and in vivo. Our findings reveal that a titanium surface with an appropriately sized microgroove/nanopore topography (SLM-1MAH) exhibits the more satisfactory adhesive and osteogenic efficiency than the clinically used sand-blasted, large-grit, and acid-etched (SLA) surface. The underlying molecular mechanism lies in the activation of the integrin α2-PI3K-Akt signaling pathway, where the SLM-1MAH surface increased the protein expressions of integrin α2 (Itga2), phosphatidylinositol 3-kinase (PI3K), and phosphorylated serine/threonine kinase Akt (p-Akt) to enhance osteogenesis and osseointegration. Furthermore, the SLM-1MAH surface also displays better osseointegration efficiency with stronger bonding strength than that on the SLA surface. This work provides a novel strategy for implant surface topography design to improve bone-implant osseointegration.


Assuntos
Nanoporos , Osseointegração , Adesão Celular , Osteogênese , Fosfatidilinositol 3-Quinases , Propriedades de Superfície , Titânio
7.
Front Microbiol ; 12: 679665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220765

RESUMO

pRS episomal plasmids are widely used in Saccharomyces cerevisiae, owing to their easy genetic manipulations and high plasmid copy numbers (PCNs). Nevertheless, their broader application is hampered by the instability of the pRS plasmids. In this study, we designed an episomal plasmid based on the endogenous 2µ plasmid with both improved stability and increased PCN, naming it p2µM, a 2µ-modified plasmid. In the p2µM plasmid, an insertion site between the REP1 promoter and RAF1 promoter was identified, where the replication (ori) of Escherichia coli and a selection marker gene of S. cerevisiae were inserted. As a proof of concept, the tyrosol biosynthetic pathway was constructed in the p2µM plasmid and in a pRS plasmid (pRS423). As a result, the p2µM plasmid presented lower plasmid loss rate than that of pRS423. Furthermore, higher tyrosol titers were achieved in S. cerevisiae harboring p2µM plasmid carrying the tyrosol pathway-related genes. Our study provided an improved genetic manipulation tool in S. cerevisiae for metabolic engineering applications, which may be widely applied for valuable product biosynthesis in yeast.

8.
Microb Biotechnol ; 14(6): 2605-2616, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32990403

RESUMO

Tyrosol and its glycosylated product salidroside are important ingredients in pharmaceuticals, nutraceuticals and cosmetics. Despite the ability of Saccharomyces cerevisiae to naturally synthesize tyrosol, high yield from de novo synthesis remains a challenge. Here, we used metabolic engineering strategies to construct S. cerevisiae strains for high-level production of tyrosol and salidroside from glucose. First, tyrosol production was unlocked from feedback inhibition. Then, transketolase and ribose-5-phosphate ketol-isomerase were overexpressed to balance the supply of precursors. Next, chorismate synthase and chorismate mutase were overexpressed to maximize the aromatic amino acid flux towards tyrosol synthesis. Finally, the competing pathway was knocked out to further direct the carbon flux into tyrosol synthesis. Through a combination of these interventions, tyrosol titres reached 702.30 ± 0.41 mg l-1 in shake flasks, which were approximately 26-fold greater than that of the WT strain. RrU8GT33 from Rhodiola rosea was also applied to cells and maximized salidroside production from tyrosol in S. cerevisiae. Salidroside titres of 1575.45 ± 19.35 mg l-1 were accomplished in shake flasks. Furthermore, titres of 9.90 ± 0.06 g l-1 of tyrosol and 26.55 ± 0.43 g l-1 of salidroside were achieved in 5 l bioreactors, both are the highest titres reported to date. The synergistic engineering strategies presented in this study could be further applied to increase the production of high value-added aromatic compounds derived from the aromatic amino acid biosynthesis pathway in S. cerevisiae.


Assuntos
Álcool Feniletílico , Saccharomyces cerevisiae , Glucosídeos , Engenharia Metabólica , Fenóis , Álcool Feniletílico/análogos & derivados , Saccharomyces cerevisiae/genética
9.
Int J Nanomedicine ; 16: 1021-1036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603366

RESUMO

PURPOSE: To investigate the role and activation mechanism of TAZ in periodontal ligament stem cells (PDLSCs) perceiving hierarchical microgroove/nanopore topography. MATERIALS AND METHODS: Titanium surface with hierarchical microgroove/nanopore topography fabricated by selective laser melting combined with alkali heat treatment (SLM-AHT) was used as experimental group, smooth titanium surface (Ti) and sandblasted, large-grit, acid-etched (SLA) titanium surface were employed as control groups. Alkaline phosphatase (ALP) activity assays, qRT-PCR, Western blotting, and immunofluorescence were carried out to evaluate the effect of SLM-AHT surface on PDLSC differentiation. Moreover, TAZ activation was investigated from the perspective of nuclear localization to transcriptional activity. TAZ knockdown PDLSCs were seeded on three titanium surfaces to detect osteogenesis- and adipogenesis-related gene expression levels. Immunofluorescence and Western blotting were employed to investigate the effect of the SLM-AHT surface on actin cytoskeletal polymerization and MAPK signaling pathway. Cytochalasin D and MAPK signaling pathway inhibitors were used to determine whether actin cytoskeletal polymerization and the MAPK signaling pathway were indispensable for TAZ activation. RESULTS: Our results showed that SLM-AHT surface had a greater potential to promote PDLSC osteogenic differentiation while inhibiting adipogenic differentiation than the other two groups. The nuclear localization and transcriptional activity of TAZ were strongly enhanced on the SLM-AHT surface. Moreover, after TAZ knockdown, the enhanced osteogenesis and decreased adipogenesis in SLM-AHT group could not be observed. In addition, SLM-AHT surface could promote actin cytoskeletal polymerization and upregulate p-ERK and p-p38 protein levels. After treatment with cytochalasin D and MAPK signaling pathway inhibitors, differences in the TAZ subcellular localization and transcriptional activity were no longer observed among the different titanium surfaces. CONCLUSION: Our results demonstrated that actin cytoskeletal polymerization and MAPK signaling pathway activation triggered by SLM-AHT surface were essential for TAZ activation, which played a dominant role in SLM-AHT surface-induced stem cell fate decision.


Assuntos
Diferenciação Celular , Nanoporos , Células-Tronco/citologia , Transativadores/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Adipogenia/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Osteogênese/efeitos dos fármacos , Ligamento Periodontal/citologia , Polimerização , Propriedades de Superfície , Titânio/farmacologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
10.
Artigo em Inglês | MEDLINE | ID: mdl-32509748

RESUMO

Surface topography dictates important aspects of cell biological behaviors. In our study, hierarchical micro-nano topography (SLM-AHT) with micro-scale grooves and nano-scale pores was fabricated and compared with smooth topography (S) and irregular micro-scale topography (SLA) surfaces to investigate mechanism involved in cell-surface interactions. Integrin α2 had a higher expression level on SLM-AHT surface compared with S and SLA surfaces, and the expression levels of osteogenic markers icluding Runx2, Col1a1, and Ocn were concomitantly upregulated on SLM-AHT surface. Moreover, formation of mature focal adhesions were significantly enhanced in SLM-AHT group. Noticablely, silencing integrin α2 could wipe out the difference of osteogenic gene expression among surfaces with different topography, indicating a crucial role of integrin α2 in topography induced osteogenic differentiation. In addition, PI3K-AKT signaling was proved to be regulated by integrin α2 and consequently participate in this process. Taken together, our findings illustrated that integrin α2-PI3K-AKT signaling axis plays a key role in hierarchical micro-nano topography promoting cell adhesion and osteogenic differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA