RESUMO
Liquids are perishable at ease during the long-term transportation and storage processes, non-invasive and in situ inspection method is urgent to be developed. In consideration of the important role of viscosity, one kind of sustainable natural product chlorogenic acid (CA) extracted from honeysuckle has been used as a versatile optical sensor for viscosity determination during the liquid spoilage process. The natural molecule was conducted by the O-diphenyl and carboxylic acid ester groups in coincidence, a typical twisted intramolecular charge transfer phenomenon was formed. This sensor features wide adaptability, high selectivity, good sensitivity, and excellent photo stability in various liquids. And CA displays a larger Stokes shift, high viscosity sensitive coefficient (0.62), and narrower energy band. The rotatable conjugate structure can be acted as the recognition site, and the bright fluorescent signal of CA is specifically activated when in the high viscous micro-environment. Inspired by this objective phenomenon, CA has been applied to detect the thickening efficiency of various food thickeners. More importantly, the viscosity fluctuations during the deterioration stage of liquids can be screened through non-invasive and in situ monitoring. We expected that more natural products can be developed as molecular tools for liquids safety investigation, and fluorescent analytical methods can be expanded toward interdisciplinary research.
Assuntos
Ácido Clorogênico , ViscosidadeRESUMO
Nrf2 is the key transcription factor mainly for regulating oxidative homeostasis and cytoprotective responses against oxidative stress. Nrf2/Keap1 pathway is one of the most important cellular defense mechanisms against endogenous or exogenous oxidative stress. With its activation, a wide range of stress-related genes is transactivated to restore the cellular homeostasis. Recent studies revealed that the aberrant activation of Nrf2 is related to the malignant progression, chemotherapeutic drug resistance and poor prognosis. Nrf2 plays a crucial role in cancer malignancy and chemotherapeutic resistance by controlling the intracellular redox homeostasis through the activation of cytoprotective antioxidant genes. Nrf2 inhibitor containing many natural products has been deemed as a novel therapeutic strategy for human malignancies. This article reviews the progress of studies of the Nrf2/Keap1 pathway, and its biological impact in solid malignancies and molecular mechanisms for causing Nrf2 hyperactivation in cancer cells. In conclusion, we summarized the deve-lopment of Nrf2 inhibitors in recent years, in the expectation of providing reference for further drug development and clinical studies.
Assuntos
Fator 2 Relacionado a NF-E2 , Neoplasias , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oxirredução , Estresse OxidativoRESUMO
BACKGROUND: D-mannose, an epimer of glucose, which is abundant in some fruits, such as cranberry, has been previously reported to inhibit urinary tract infection. In recent years, the potential function of D-mannose has been broadened into the regulation of other inflammation diseases and cancer. It was reported that D-mannose can increase reactive oxygen species (ROS) production, while IDH2 is important for the generation of NADPH, the crucial reducing factor. These findings prompted us to determine whether D-mannose can regulate IDH2 and IDH2-mediated NADPH production in tumor. METHODS: The breast cancer cell line MDA-MB-231 was cultured and treated with 100mM D-mannose. IDH2 expression was detected by Western Blot and qRT-PCR. RNA-seq was conducted to identify the differentially expressed genes. BioGRID database was used to find the IDH2 interactors. Tumor cells were collected to measure the NADPH production using the NADP+/NADPH detection Kit. Colony formation assay and CCK-8 assay were conducted to evaluate the proliferation of cells. RESULTS: D-mannose can promote IDH2 protein degradation through ubiquitination-proteasome pathway. Mechanistically, D-mannose treatment upregulated the expression of an E3 ligase - RNF185, which can interact with IDH2 and promotes its proteasomal degradation. Consequently, IDH2-mediated NADPH production was inhibited by D-mannose, the proliferation of breast cancer cells was retarded, and the sensitivity to pro-oxidant of breast cancer cells was elevated. CONCLUSIONS: Our study demonstrated that D-mannose can degrade IDH2 and inhibit the production of NADPH to suppress the proliferation of breast cancer cells and render the breast cancer cells more sensitive to pro-oxidant treatment. Furthermore, we illustrated the E3 ligase RNF185 plays an important role in D-mannose-mediated proteasomal degradation of IDH2.
RESUMO
The programmed death-ligand 1 (PD-L1) on the surface of tumor cells binds to the receptor programmed cell death protein 1 (PD-1) on effector T cells, thereby inhibiting the anti-tumor immune response. Immune checkpoint blockade (ICB) therapy targeting PD-1/PD-L1 has been approved for the treatment of human cancers with lasting clinical benefit. However, many cancer patients did not respond to anti-PD-1/PD-L1 antibody blocking therapy or drugs targeting PD-1/PD-L1. Recent studies have shown that the response to PD-1/PD-L1 blockade may be related to the PD-L1 abundance of tumor cells. Therefore, it is of crucial significance to find drugs to regulate the expression of PD-L1, which can provide new strategies to improve the response rate and efficacy of PD-1/PD-L1 blocking in cancer treatment. Here, we found that GABA and baclofen, upregulates the protein level of PD-L1 by reducing the mRNA and protein levels of STUB1, a E3 ubiquitin ligase, thereby decreasing the interaction between STUB1 and PD-L1, and ultimately stabilizing PD-L1. Notably, GABA and baclofen did not affect cell proliferation in vitro, while in the treatment of breast cancer in mice, the therapeutic effect of baclofen combined with anti-PD-L1 antibody is significantly better than that of using anti-PD-L1 antibody alone by stimulating tumor infiltration of CD8+ T cells and antitumor immunity. Taken together, we unveiled a previously unappreciated role of GABA/baclofen in stabilizing PD-L1 and enhancing the immunotherapy of breast cancer.
RESUMO
Liquids, functioning as nutrients and energy systems, regulate various functions during storage programs. Microenvironmental viscosity is one of the most important physical parameters associated with the extent of deterioration, and it is crucial to monitor the mutation of viscosity at a molecular level. Herein, we utilized caffeic acid (CaC), a natural product extracted from thistles, as a molecular probe for viscosity sensing. CaC contains phenol hydroxyl (electron-donor) and carboxyl (electron-acceptor) groups, with both moieties connected by conjugated single and double bonds, forming a typical twisted intramolecular charge transfer system. The fluorescent probe CaC, obtained from a natural product without any chemical processing, exhibits high sensitivity (x = 0.43) toward viscosity, with an obvious visualized turn-on signal. Moreover, it displays good photostability, selectivity, and wide universality in commercial liquids. Utilizing CaC, we have successfully visualized viscosity enhancement during the spoilage process, with a positive correlation between the degree of liquid spoilage and microenvironmental viscosity. Thus, this study will provide a convenient and efficient molecular probe for food safety inspection across the boundaries of traditional biological applications.
RESUMO
The dual tyrosine kinase (EGFR/HER2) inhibitor lapatinib is currently used to clinically treat HER2-positive breast cancer. However, a majority of patients do not respond to lapatinib therapy within 6 months. Therefore, potentiating the anti-tumor effect of lapatinib by combination treatment has a great potential to overcome the obstacle. Herein, we aim to investigate the anti-tumor activity of lapatinib in combination with brusatol and explore the potential mechanism involved in the combinatorial treatment. Our findings revealed that the Nrf2 inhibitor brusatol potently enhanced the anti-tumor effect of lapatinib against SK-BR-3, SK-OV-3 and AU565 cancer cells in a synergistic manner. Furthermore, we found that lapatinib plus brusatol more effectively decreased Nrf2 level and induced ROS generation in both SK-BR-3 and SK-OV-3 cells. Moreover, we also observed a significant reduction on the phosphorylation of HER2, EGFR, AKT and ERK1/2 in SK-BR-3 and SK-OV-3 cells when treated with lapatinib plus brusatol compared to either agent alone. More importantly, brusatol significantly augmented the anti-tumor effects of lapatinib in the SK-OV-3 xenograft model. In summary, these data provide a potential rationale for the combination of brusatol and lapatinib on the treatment of HER2-positive cancers.
RESUMO
The HER2-targeting antibody trastuzumab has shown effectiveness in treating HER2-positive breast and gastric cancers; however, its responses are limited. Currently, Nrf2 has been deemed as a key transcription factor in promoting cancer progression and resistance by crosstalk with other proliferative signaling pathways. Brusatol as a novel Nrf2 inhibitor has been deemed as an efficacious and safe drug candidate in cancer therapy. In this study, we firstly reported that brusatol exerted the growth-inhibitory effects on HER2-positive cancer cells by regressing Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways in these cells. More importantly, we found that brusatol synergistically enhanced the antitumor activity of trastuzumab against HER2-positive SK-OV-3 and BT-474 cells, which may be attributed to the inhibition of Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways. Furthermore, the synergistic effects were also observed in BT-474 and SK-OV-3 tumor xenografts. In addition, our results showed that trastuzumab markedly enhanced brusatol-induced ROS accumulation and apoptosis level, which could further explain the synergistic effects. To conclude, the study provided a new insight on exploring Nrf2 inhibition in combination with HER2-targeted trastuzumab as a potential clinical treatment regimen in treating HER2-positive cancers.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Brucea/química , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Quassinas/uso terapêutico , Trastuzumab/uso terapêutico , Animais , Antineoplásicos Imunológicos/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quassinas/farmacologia , Transfecção , Trastuzumab/farmacologiaRESUMO
Dithiocarbamate has been reported to possess a potent antitumor efficacy against several types of cancer, such as ovarian cancer, breast cancer and hepatocellular carcinoma; however, only a few studies have investigated its inhibitory effect on esophageal cancer. Dipyridylhydrazone dithiocarbamate (DpdtC) is a novel dithiocarbamate derivative that was recently designed, synthesized and evaluated in our previous study. In the present study, the cell growth inhibition and apoptosis induced by DpdtC were measured using the CCK-8 and Annexin V-FITC/propidium iodide staining assays, respectively. Epidermal growth factor receptor (EGFR) signaling pathway and apoptosis related protein levels were examined by western blotting. In vivo effect of DpdtC was evaluated in nude mice bearing KYSE-450 ×enograft tumors. The aims of the present study were to further evaluate the antitumor effects of DpdtC on esophageal cancer cells (KYSE-150 and KYSE-450 cells), and to investigate its potential mechanism of action in vitro and in vivo. It was found that DpdtC significantly inhibited KYSE-150 and KYSE-450 cell proliferation by regulating the EGFR/AKT signaling pathway and inducing apoptosis. In addition, this effect was further identified in vivo; DpdtC inhibited the growth of the KYSE-450 esophageal cancer xenografts by regulating the EGFR/AKT signaling pathway. Furthermore, DpdtC did not affect the body weight in mice. Collectively, the present results suggested that DpdtC may be a promising antitumor drug candidate for the treatment of esophageal cancer.
RESUMO
Background and Purpose: Although trastuzumab has shown considerable activity in the treatment of HER2-positive breast and gastric cancers, a significant proportion of patients do not respond to trastuzumab. Recent studies revealed that osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson possesses potent anti-tumor activity. Here, we for the first time investigated the anti-tumor activity of trastuzumab in combination with osthole in HER2-overexpressing cancers. Materials and Methods: N87 and SK-BR-3 cell lines, which were HER2-overexpressing cancer cells were used in our study. Cell Counting Kit-8 (CCK-8) assay was utilized to test the inhibitory effects of trastuzumab plus osthole. Combination index (CI) values were calculated using the Chou-Talalay method. Fluorescence-Activated Cell Sorter (FACS) assay was used to examine the cell cycle change and apoptosis upon combinatorial treatment. N87 tumor xenografts were established to evaluate in vivo effects of trastuzumab plus osthole. In addition, molecular mechanisms were analyzed by Western blot in vitro and in vivo. Results: As shown in our study, osthole alone exhibited effective anti-tumor activity against HER2-overexpressed N87 gastric cancer cells and SK-BR-3 breast cancer cells, which may be attributed to cell cycle arrest on G2/M phase and apoptosis. More importantly, our data demonstrated that trastuzumab plus osthole was much more potent than either agent alone in inhibiting the growth of N87 cancer cells in vitro and in vivo, which may be partly explained by the enhanced apoptosis upon the combinatorial treatment. Besides these, we also observed a significant decrease on the phosphorylation of AKT and MAPK in N87 cells when treated with trastuzumab plus osthole compared to either agent alone. Further data from N87 tumor xenografts revealed that trastuzumab plus osthole exerted their synergistic effects mainly on AKT signaling pathway. Conclusion: Collectively, these results support the clinical development of combination osthole with trastuzumab for the treatment of HER2-overexpressed gastric cancer.
RESUMO
Previously, we developed a novel EGFR-targeted antibody (denoted as Pan), which has superior antitumor activity against EGFR-overexpressed tumors. However, it shows marginal effect on the growth of esophageal cancers. Therefore, the variable region of Pan was fused to a fragment of Pseudomonas exotoxin A (PE38) to create the immunotoxin, denoted as Ptoxin (PT). Results indicated that PT shows more effective antitumor activity as compared with Pan both on EGFR-overexpressed KYSE-450 and KYSE-150 esophageal cancer cells, especially on KYSE-450 cells. Moreover, treatment of PT induces regression of KYSE-450 tumor xenografts in nude mice. Furthermore, we investigated the potential mechanism involved in the enhanced antitumor effects of PT. Data showed that PT was more potent in reducing the phosphorylation of EGFR and ERK1/2. More importantly, we for the first time found that PT was more effective than Pan in inducing ROS accumulation by suppression of the Nrf2-Keap1 antioxidant pathway, and then induced apoptosis in KYSE-450 esophageal cancer cells, which may partly explain the more sensitive response of KYSE-450 to PT treatment. To conclude, our study provides a promising therapeutic approach for immunotoxin-based esophageal cancer treatment.