Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 24(13): 14124-37, 2016 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-27410571

RESUMO

The influence of a three-dimensional (3D) photonic crystal (PC) on the plasmonic properties of gold nanorods (GNRs), which are placed on the surface of the PC, was investigated both numerically and experimentally. The 3D PC formed by closely packed polystyrene spheres was fabricated by using a pressure controlled isothermal heating vertical deposition technique. For a GNR whose longitudinal surface plasmon resonance (LSPR) is located at the bandgap edges of the PC, a dramatic narrowing of the absorption spectrum as well as an enhancement in electric field and thus the absorption was observed. It was suggested that the small group velocities at the bandgap edges of the PC are responsible for the slow decay of the plasmonic mode in the GNR. To confirm the enhancement in the absorption of the GNRs induced by the nearby PC, we examined the two-photon-induced luminescence (TPL) of an assembly of GNRs dispersed on the surface of the PC. Under the excitation of femtosecond laser pulses which was resonant with the LSPR of GNRs, it was found that the excitation intensity necessary for melting GNRs placed on the surface of the PC was nearly one order of magnitude smaller than that for GNRs placed on the surface of a glass slide, in good agreement with the results predicted by the numerical simulations. Our findings indicate the possibility of using PCs to modify the plasmonic and optical properties of GNRs which are quite useful for the practical applications of GNRs such as nanoscale sensors and optical data storage.

2.
Opt Express ; 23(23): 30118-26, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698492

RESUMO

ZnO/Zn hybrid nanostructures including nanowires and nanonets were induced on a Zn foil by using 400-nm femtosecond (fs) laser pulses with a low repetition rate of 1 kHz and duration of 100 fs. The laser fluence was chosen to be slightly above the ablation threshold of Zn. The luminescence of the formed ZnO/Zn hybrid nanostructures was examined by using fs laser pulses with a high repetition rate of 76 MHz and duration of ~130 fs through both single-photon and multiphoton excitation. While the luminescence spectrum under the single-photon excitation exhibited a single peak at ~480 nm, a broadband upconversion luminescence with many ripples was observed under the multiphoton excitation. More interestingly, the upconversion luminescence of the ZnO/Zn hybrid nanostructures was significantly enhanced by the underlying Zn nanostructures which induced strongly localized electric field. The enhancement of the upconversion luminescence was verified by the short lifetime of only ~79 ps observed for the ZnO/Zn hybrid nanostructures, which is nearly one order of magnitude smaller as compared with the luminescence lifetime of the ZnO nanorods synthesized by using the chemical coprecipitation method. The localization of electric field in the ZnO/Zn hybrid nanostructures was confirmed by the numerical simulations based the finite-difference time-domain technique.

3.
Opt Express ; 23(22): 29231-44, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561193

RESUMO

ZnO nanorods (NRs) self-organized into flowers were synthesized at different temperatures ranging from 100°C to 180°C by using the hydrothermal method. The existence of Zn interstitials (Zn(i)) was confirmed by X-ray photoelectron spectroscopy and a larger amount of Zn(i) was found in the ZnO NRs prepared at higher temperatures. A redshift of the emission peak of more than 15 nm was observed for the ZnO NRs under single photon excitation. The nonlinear optical properties of the flower-like ZnO NRs were characterized by using focused femtosecond laser light and strong three-photon-induced luminescence was observed at an excitation wavelength of ~750 nm. More interestingly, a large redshift of the emission peak was observed with increasing excitation intensity, resulting in efficient blue emission with a narrow bandwidth of ~30 nm. It was confirmed that the large redshift originates from the heating of the ZnO NRs to a temperature of more than 800°C and the closely packed ZnO NRs in the flowers play a crucial role in heat accumulation. The stable and efficient three-photon-induced blue emission from such ZnO NRs may find potential applications in the fields of optical display, high-temperature sensors and light therapy of tumors.

4.
Opt Express ; 22(23): 28086-99, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402049

RESUMO

Periodic surface structures with periods as small as about one-tenth of the irradiating femtosecond (fs) laser light wavelength were created on the surface of a titanium (Ti) foil by exploiting laser-induced oxidation and third harmonic generation (THG). They were achieved by using 100-fs laser pulses with a repetition rate of 1 kHz and a wavelength ranging from 1.4 to 2.2 µm. It was revealed that an extremely thin TixOy layer was formed on the surface of the Ti foil after irradiating fs laser light with a fluence smaller than the ablation threshold of Ti, leading to a significant enhancement in THG which may exceed the ablation threshold of TixOy. As compared with Ti, the maximum efficacy factor for TixOy appears at a larger normalized wavevector in the direction perpendicular to the polarization of the fs laser light. As a result, the THG-dominated laser ablation of TixOy induces 100-nm periodic structures parallel to the polarization of the fs laser light. The depth of the periodic structures was found to be ~10 nm by atomic force microscopy and the formation of the thin TixOy layer was verified by energy dispersive X-ray spectroscopy.


Assuntos
Lasers , Microscopia de Força Atômica/instrumentação , Espectrometria por Raios X/instrumentação , Titânio/química , Desenho de Equipamento , Propriedades de Superfície
5.
Appl Opt ; 53(2): 189-94, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24514048

RESUMO

We investigated the second and third harmonic generation (SHG and THG) in ZnO nanorods (NRs) by using a femtosecond laser (optical parametric amplifier with tunable wavelengths) with a long excitation wavelength of 1350 nm and a low repetition rate of 1 kHz. The damage threshold for ZnO NRs in this case was sufficiently large, enabling us to observe the competition between SHG and THG. The transition from red to blue emission and the mixing of red and blue light with different ratios were successfully demonstrated by simply varying excitation intensity, implying the potential applications of ZnO NRs in all-optical display.

6.
Opt Express ; 21(8): 10025-38, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609708

RESUMO

The nonlinear optical properties of single, double and multiple ZnO nanorods (NRs) were investigated by using a focused femtosecond (fs) laser beam. The excitation wavelength of the fs laser was intentionally chosen to be 754 nm at which the energy of two photons is slightly larger than that of the exciton ground state but smaller than the bandgap energy of ZnO. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed and their dependences on excitation density were examined. For single ZnO NRs, only SHG was observed even at the highest excitation density we used in the experiments. The situation was changed when the joint point of two ZnO NRs perpendicular to each other was excited. In this case, TPL could be detected at low excitation densities and it increased rapidly with increasing excitation density. At the highest excitation density of ~15 MW/cm(2), the intensity of the TPL became comparable to that of the SHG. For an ensemble of ZnO NRs packed closely, a rapid increase of TPL with a slope of more than 7.0 and a gradual saturation of SHG with a slope of ~0.34 were found at high excitation densities. Consequently, the nonlinear response spectrum was eventually dominated by the TPL at high excitation densities and the SHG appeared to be very weak. We interpret this phenomenon by considering both the difference in electric field distribution and the effect of heat accumulation. It is suggested that the electric field enhancement in double and multiple NRs plays a crucial role in determining the nonlinear response of the NRs. In addition, the reduction in the bandgap energy induced by the heat accumulation effect also leads to the significant change in nonlinear response. This explanation is supported by the calculation of the electric field distribution using the discrete dipole approximation method and the simulation of temperature rise in different ZnO NRs based on the finite element method.


Assuntos
Medições Luminescentes/métodos , Modelos Químicos , Nanotubos/química , Nanotubos/ultraestrutura , Óxido de Zinco/química , Simulação por Computador , Teste de Materiais , Fótons
7.
Colloids Surf B Biointerfaces ; 163: 47-54, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277017

RESUMO

We proposed the use of copper (Cu) doping to modify the mechanical properties of gold nanorods (AuNRs) and demonstrated the triggering of the cytotoxicity of Cu-doped AuNRs with ultrasonic wave. The mechanical properties of Cu-doped AuNRs were analyzed theoretically by using the density-function calculation and it was found that Cu-Au bond is much weaker than Au-Au bond. In experiments, AuNRs without and with Cu doping were synthesized and they were found to be low cytotoxic to both human liver hepatocellular carcinoma (HepG2) cells and normal liver cells (L02). It was found that Cu-doped AuNRs can be broken into small gold nanoparticles (<5 nm) under high-power ultrasonic wave while undoped AuNRs were quite stable, although the amount of Cu doped into AuNRs was quite small (0.2%). The small gold nanoparticles are found to be with high toxicity to HepG2 cells. The cellular viability of the HepG2 cells dropped to nearly zero after being incubated with Cu-doped AuNRs (50 nM), which had been treated with a 300-W ultrasonic wave. Our findings suggest a novel method for modifying the mechanical properties of AuNRs and especially for triggering their cytotoxicity which is quite useful for in vitro therapy of cancer cells.


Assuntos
Cobre/toxicidade , Ouro/farmacologia , Nanopartículas Metálicas/efeitos da radiação , Nanotubos/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Ouro/química , Ouro/efeitos da radiação , Células Hep G2 , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanotubos/química , Nanotubos/toxicidade , Teoria Quântica , Ondas Ultrassônicas
8.
Nanoscale ; 10(19): 9153-9163, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29725675

RESUMO

Large metallic nanoparticles with sizes comparable to the wavelength of light are expected to support high-order plasmon modes exhibiting resonances in the visible to near infrared spectral range. However, the radiation behavior of high-order plasmon modes, including scattering spectra and radiation patterns, remains unexplored. Here, we report on the first observation and characterization of the high-order plasmon modes excited in large gold nanospheres by using the surface plasmon polaritons generated on the surface of a thin gold film. The polarization-dependent scattering spectra were measured by inserting a polarization analyzer in the collection channel and the physical origins of the scattering peaks observed in the scattering spectra were clearly identified. More interestingly, the radiation of electric quadrupoles and octupoles was resolved in both frequency and spatial domains. In addition, the angular dependences of the radiation intensity for all plasmon modes were extracted by fitting the polarization-dependent scattering spectra with multiple Lorentz line shapes. A significant enhancement of the electric field was found in the gap plasmon modes and it was employed to generate hot-electron intraband luminescence. Our findings pave the way for exploiting the high-order plasmon modes of large metallic nanoparticles in the manipulation of light radiation and light-matter interaction.

9.
Sci Rep ; 6: 21091, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26899189

RESUMO

We reported the first observation of the two-photon-induced quantum cutting phenomenon in a Gd(3+)/Tb(3+)-codoped glass in which two photons at ~400 nm are simultaneously absorbed, leading to the cascade emission of three photons in the visible spectral region. The two-photon absorption induced by femtosecond laser pulses allows the excitation of the energy states in Gd(3+) which are inactive for single-photon excitation and enables the observation of many new electric transitions which are invisible in the single-photon-induced luminescence. The competition between the two-photon-induced photon cascade emission and the single-photon-induced emission was manipulated to control the luminescence color of the glass. We demonstrated the change of the luminescence color from red to yellow and eventually to green by varying either the excitation wavelength or the excitation power density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA