Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nature ; 579(7797): 92-96, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32076267

RESUMO

Colonization, speciation and extinction are dynamic processes that influence global patterns of species richness1-6. Island biogeography theory predicts that the contribution of these processes to the accumulation of species diversity depends on the area and isolation of the island7,8. Notably, there has been no robust global test of this prediction for islands where speciation cannot be ignored9, because neither the appropriate data nor the analytical tools have been available. Here we address both deficiencies to reveal, for island birds, the empirical shape of the general relationships that determine how colonization, extinction and speciation rates co-vary with the area and isolation of islands. We compiled a global molecular phylogenetic dataset of birds on islands, based on the terrestrial avifaunas of 41 oceanic archipelagos worldwide (including 596 avian taxa), and applied a new analysis method to estimate the sensitivity of island-specific rates of colonization, speciation and extinction to island features (area and isolation). Our model predicts-with high explanatory power-several global relationships. We found a decline in colonization with isolation, a decline in extinction with area and an increase in speciation with area and isolation. Combining the theoretical foundations of island biogeography7,8 with the temporal information contained in molecular phylogenies10 proves a powerful approach to reveal the fundamental relationships that govern variation in biodiversity across the planet.


Assuntos
Biodiversidade , Aves/classificação , Ilhas , Modelos Biológicos , Animais , Bases de Dados de Ácidos Nucleicos , Extinção Biológica , Especiação Genética , Filogenia , Filogeografia
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410843

RESUMO

In the African weakly electric fish genus Campylomormyrus, electric organ discharge signals are strikingly different in shape and duration among closely related species, contribute to prezygotic isolation, and may have triggered an adaptive radiation. We performed mRNA sequencing on electric organs and skeletal muscles (from which the electric organs derive) from 3 species with short (0.4 ms), medium (5 ms), and long (40 ms) electric organ discharges and 2 different cross-species hybrids. We identified 1,444 upregulated genes in electric organ shared by all 5 species/hybrid cohorts, rendering them candidate genes for electric organ-specific properties in Campylomormyrus. We further identified several candidate genes, including KCNJ2 and KLF5, and their upregulation may contribute to increased electric organ discharge duration. Hybrids between a short (Campylomormyrus compressirostris) and a long (Campylomormyrus rhynchophorus) discharging species exhibit electric organ discharges of intermediate duration and showed imbalanced expression of KCNJ2 alleles, pointing toward a cis-regulatory difference at this locus, relative to electric organ discharge duration. KLF5 is a transcription factor potentially balancing potassium channel gene expression, a crucial process for the formation of an electric organ discharge. Unraveling the genetic basis of the species-specific modulation of the electric organ discharge in Campylomormyrus is crucial for understanding the adaptive radiation of this emerging model taxon of ecological (perhaps even sympatric) speciation.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Alelos , Órgão Elétrico/metabolismo , Regulação para Cima , Canais de Potássio/genética
3.
Proc Biol Sci ; 291(2019): 20232519, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503331

RESUMO

Despite decades of research, surprisingly little is known about the mechanism(s) by which an individual's genotype is encoded in odour. Many studies have focused on the role of the major histocompatibility complex (MHC) owing to its importance for survival and mate choice. However, the salience of MHC-mediated odours compared to chemicals influenced by the rest of the genome remains unclear, especially in wild populations where it is challenging to quantify and control for the effects of the genomic background. We addressed this issue in Antarctic fur seals by analysing skin swabs together with full-length MHC DQB II exon 2 sequences and data from 41 genome-wide distributed microsatellites. We did not find any effects of MHC relatedness on chemical similarity and there was also no relationship between MHC heterozygosity and chemical diversity. However, multilocus heterozygosity showed a significant positive association with chemical diversity, even after controlling for MHC heterozygosity. Our results appear to rule out a dominant role of the MHC in the chemical encoding of genetic information in a wild vertebrate population and highlight the need for genome-wide approaches to elucidate the mechanism(s) and specific genes underlying genotype-odour associations.


Assuntos
Otárias , Animais , Otárias/genética , Genótipo , Heterozigoto , Complexo Principal de Histocompatibilidade/genética , Odorantes , Regiões Antárticas
4.
Mol Ecol ; 33(4): e17248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126927

RESUMO

Ecological speciation within the mormyrid genus Campylomormyrus resulted in sympatric species exhibiting divergence in their feeding apparatus and electric organ discharge (EOD). This study documents the overall diet of the genus Campylomormyrus and examines the hypothesis that the Campylomormyrus radiation is caused by adaptation to different food sources. We performed diet assessment of five sympatric Campylomormyrus species (C. alces, C. compressirostris, C. curvirostris, C. tshokwe, C. numenius) and their sister taxon Gnathonemus petersii with markedly different snout morphologies and EODs using hybrid capture/HTS DNA metabarcoding of their stomach contents. Our approach allowed for high taxonomic resolution of prey items, including benthic invertebrates, allochthonous invertebrates and vegetation. Comparisons of the diet compositions using quantitative measures and diet overlap indices revealed that all species are able to exploit multiple food niches in their habitats, that is fauna at the bottom, the water surface and the water column. A major part of the diet is larvae of aquatic insects, such as dipterans, coleopterans and trichopterans, known to occur in holes and interstitial spaces of the substrate. The results indicate that different snout morphologies and the associated divergence in the EOD could translate into different prey spectra. This suggests that the diversification in EOD and/or morphology of the feeding apparatus could be under functional adaptation.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/genética , Simpatria , Órgão Elétrico/anatomia & histologia , Dieta , Água
5.
BMC Genomics ; 24(1): 129, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941548

RESUMO

BACKGROUND: Teleost fishes comprise more than half of the vertebrate species. Within teleosts, most phylogenies consider the split between Osteoglossomorpha and Euteleosteomorpha/Otomorpha as basal, preceded only by the derivation of the most primitive group of teleosts, the Elopomorpha. While Osteoglossomorpha are generally species poor, the taxon contains the African weakly electric fish (Mormyroidei), which have radiated into numerous species. Within the mormyrids, the genus Campylomormyrus is mostly endemic to the Congo Basin. Campylomormyrus serves as a model to understand mechanisms of adaptive radiation and ecological speciation, especially with regard to its highly diverse species-specific electric organ discharges (EOD). Currently, there are few well-annotated genomes available for electric fish in general and mormyrids in particular. Our study aims at producing a high-quality genome assembly and to use this to examine genome evolution in relation to other teleosts. This will facilitate further understanding of the evolution of the osteoglossomorpha fish in general and of electric fish in particular. RESULTS: A high-quality weakly electric fish (C. compressirostris) genome was produced from a single individual with a genome size of 862 Mb, consisting of 1,497 contigs with an N50 of 1,399 kb and a GC-content of 43.69%. Gene predictions identified 34,492 protein-coding genes, which is a higher number than in the two other available Osteoglossomorpha genomes of Paramormyrops kingsleyae and Scleropages formosus. A Computational Analysis of gene Family Evolution (CAFE5) comparing 33 teleost fish genomes suggests an overall faster gene family turnover rate in Osteoglossomorpha than in Otomorpha and Euteleosteomorpha. Moreover, the ratios of expanded/contracted gene family numbers in Osteoglossomorpha are significantly higher than in the other two taxa, except for species that had undergone an additional genome duplication (Cyprinus carpio and Oncorhynchus mykiss). As potassium channel proteins are hypothesized to play a key role in EOD diversity among species, we put a special focus on them, and manually curated 16 Kv1 genes. We identified a tandem duplication in the KCNA7a gene in the genome of C. compressirostris. CONCLUSIONS: We present the fourth genome of an electric fish and the third well-annotated genome for Osteoglossomorpha, enabling us to compare gene family evolution among major teleost lineages. Osteoglossomorpha appear to exhibit rapid gene family evolution, with more gene family expansions than contractions. The curated Kv1 gene family showed seven gene clusters, which is more than in other analyzed fish genomes outside Osteoglossomorpha. The KCNA7a, encoding for a potassium channel central for EOD production and modulation, is tandemly duplicated which may related to the diverse EOD observed among Campylomormyrus species.


Assuntos
Carpas , Peixe Elétrico , Animais , Peixe Elétrico/genética , Peixes/genética , Órgão Elétrico , Filogenia , Canais de Potássio/genética , Evolução Molecular
6.
Mol Ecol ; 32(23): 6190-6209, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35869804

RESUMO

Understanding the environmental impact on the assembly of local communities in relation to their spatial and temporal connectivity is still a challenge in metacommunity ecology. This study aims to unravel underlying metacommunity processes and environmental factors that result in observed zooplankton communities. Unlike most metacommunity studies, we jointly examine active and dormant zooplankton communities using a DNA metabarcoding approach to overcome limitations of morphological species identification. We applied two-fragment (COI and 18S) metabarcoding to monitor communities of 24 kettle holes over a two-year period to unravel (i) spatial and temporal connectivity of the communities, (ii) environmental factors influencing local communities, and (iii) dominant underlying metacommunity processes in this system. We found a strong separation of zooplankton communities from kettle holes of different hydroperiods (degree of permanency) throughout the season, while the community composition within single kettle holes did not differ between years. Species richness was primarily dependent on pH and permanency, while species diversity (Shannon Index) was influenced by kettle hole location. Community composition was impacted by kettle hole size and surrounding field crops. Environmental processes dominated temporal and spatial processes. Sediment communities showed a different composition compared to water samples but did not differ between ephemeral and permanent kettle holes. Our results suggest that communities are mainly structured by environmental filtering based on pH, kettle hole size, surrounding field crops, and permanency. Environmental filtering based on specific conditions in individual kettle holes seems to be the dominant process in community assembly in the studied zooplankton metacommunity.


Assuntos
Ecossistema , Zooplâncton , Animais , Zooplâncton/genética , Código de Barras de DNA Taxonômico , Meio Ambiente , Ecologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-35119505

RESUMO

Hybridisation is an important element of adaptive radiation in fish but data are limited in weakly electric mormyrid fish in this respect. Recently, it has been shown that intragenus hybrids (Campylomormyrus) are fertile and are able to produce F2-fish. In this paper, we demonstrate that even intergenus hybrids (Gnathonemus petersii ♂ × Campylomormyrus compressirostris ♀) are fertile. Three artificial reproduction (AR) trials, with an average fertilisation rate of ca. 23%, yielded different numbers of survivals (maximally about 50%) of the F1-hybrids. The complete ontogenetic development of these hybrids is described concerning their morphology and electric organ discharge (EOD). Two EOD types emerged at the juvenile stage, which did not change up to adulthood. Type I consisted of four phases and Type II was triphasic. The minimum body length at sexual maturity was between 10 and 11 cm. Malformations, growth and mortality rates are also described.


Assuntos
Peixe Elétrico , Animais , Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Fertilidade , Hibridização Genética
8.
J Hered ; 112(1): 108-121, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33555304

RESUMO

In plants, long-distance dispersal is both attenuated and directed by specific movement vectors, including animals, wind, and/or water. Hence, movement vectors partly shape metapopulation genetic patterns that are, however, also influenced by other life-history traits such as clonal growth. We studied the relationship between area, isolation, plant-species richness, reproduction, and dispersal mechanisms with genetic diversity and divergence in 4 widespread wetland plant-species in a total of 20 island-like kettle-hole habitats surrounded by an intensive agricultural landscape. Our results showed that genetic parameters reflect the reproduction strategies with the highest genetic diversity being observed in the non-clonal, outcrossing Oenanthe aquatica compared to the clonal Lycopus europaeus, Typha latifolia, and Phragmites australis. Lycopus showed a positive relationship between genetic diversity and kettle-hole area, but a negative relationship with the number of neighboring kettle holes (less isolation). Genetic diversity increased with plant-species richness in the clonal species Phragmites and Lycopus; while it decreased in the non-clonal Oenanthe. Finally, genetic divergence and, therefore, connectivity differed between alternative dispersal strategies, where wind-dispersed Typha and Phragmites had a higher gene flow between the analyzed kettle holes compared with the insect-pollinated, hydrochorous Lycopus and Oenanthe. Our study provides information on genetic patterns related to reproduction and dispersal mechanisms of 4 common wetland species contributing to the understanding of the functioning of plant metacommunities occurring in kettle holes embedded in agricultural landscapes.


Assuntos
Variação Genética , Dispersão Vegetal , Poaceae/genética , Typhaceae/genética , Fluxo Gênico , Genética Populacional , Endogamia , Ilhas , Desequilíbrio de Ligação , Áreas Alagadas
9.
Artigo em Inglês | MEDLINE | ID: mdl-32468077

RESUMO

Hybridization is widespread in fish and constitutes an important mechanism in fish speciation. There is, however, little knowledge about hybridization in mormyrids. F1-interspecies hybrids between Campylomormyrus tamandua ♂ × C. compressirostris ♀ were investigated concerning: (1) fertility; (2) survival of F2-fish and (3) new gene combinations in the F2-generation concerning the structure of the electric organ and features of the electric organ discharge. These F1-hybrids achieved sexual maturity at about 12-13.5 cm total length. A breeding group comprising six males and 13 females spawned 28 times naturally proving these F1-fish to be fertile. On average 228 eggs were spawned, the average fertilization rate was 47.8%. Eggs started to hatch 70-72 h after fertilization, average hatching rate was 95.6%. Average mortality rate during embryonic development amounted to 2.3%. Average malformation rate during the free embryonic stage was 27.7%. Exogenous feeding started on day 11. In total, we raised 353 normally developed larvae all of which died consecutively, the oldest specimen reaching an age of 5 months. During survival, the activities of the larval and adult electric organs were recorded and the structure of the adult electric organ was investigated histologically.


Assuntos
Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Animais , Cruzamento , Peixe Elétrico/classificação , Órgão Elétrico/citologia , Feminino , Fertilidade , Hibridização Genética , Masculino
10.
Artigo em Inglês | MEDLINE | ID: mdl-32112119

RESUMO

The aim of this study was a longitudinal description of the ontogeny of the adult electric organ of Campylomormyrus rhynchophorus which produces as adult an electric organ discharge of very long duration (ca. 25 ms). We could indeed show (for the first time in a mormyrid fish) that the electric organ discharge which is first produced early during ontogeny in 33-mm-long juveniles is much shorter in duration and has a different shape than the electric organ discharge in 15-cm-long adults. The change from this juvenile electric organ discharges into the adult electric organ discharge takes at least a year. The increase in electric organ discharge duration could be causally linked to the development of surface evaginations, papillae, at the rostral face of the electrocyte which are recognizable for the first time in 65-mm-long juveniles and are most prominent at the periphery of the electrocyte.


Assuntos
Peixe Elétrico/fisiologia , Órgão Elétrico/fisiologia , Fatores Etários , Animais , Peixe Elétrico/crescimento & desenvolvimento , Órgão Elétrico/crescimento & desenvolvimento , Eletricidade , Fatores de Tempo
11.
J Fish Biol ; 96(4): 905-912, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32039478

RESUMO

The European river lamprey Lampetra fluviatilis and the European brook lamprey Lampetra planeri (Block 1784) are classified as a paired species, characterized by notably different life histories but morphological similarities. Previous work has further shown limited genetic differentiation between these two species at the mitochondrial DNA level. Here, we expand on this previous work, which focused on lamprey species from the Iberian Peninsula in the south and mainland Europe in the north, by sequencing three mitochondrial marker regions of Lampetra individuals from five river systems in Ireland and five in southern Italy. Our results corroborate the previously identified pattern of genetic diversity for the species pair. We also show significant genetic differentiation between Irish and mainland European lamprey populations, suggesting another ichthyogeographic district distinct from those previously defined. Finally, our results stress the importance of southern Italian L. planeri populations, which maintain several private alleles and notable genetic diversity.


Assuntos
DNA Mitocondrial/genética , Lampreias/classificação , Lampreias/genética , Animais , Europa (Continente) , Genética Populacional , Filogeografia , Rios
12.
BMC Evol Biol ; 19(1): 175, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462290

RESUMO

BACKGROUND: Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats. RESULTS: The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats. CONCLUSIONS: Given that 50% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become - at least locally - extinct.


Assuntos
Mudança Climática , Taxa de Mutação , Adaptação Fisiológica , Evolução Biológica , Simulação por Computador , Ecossistema , Extinção Biológica , Mutação , Densidade Demográfica , Reprodução
13.
BMC Genomics ; 19(1): 12, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298680

RESUMO

BACKGROUND: The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. RESULTS: We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40% of the transcripts for each species were functionally annotated and about 70% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. CONCLUSIONS: We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species.


Assuntos
Gônadas/metabolismo , Poecilia/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Meiose/genética , Partenogênese/genética , Poecilia/metabolismo , Análise de Sequência de RNA
14.
Biol Lett ; 14(11)2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487258

RESUMO

Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.


Assuntos
Evolução Biológica , Temperatura Alta/efeitos adversos , Rotíferos/fisiologia , Animais , Filogenia , Especificidade da Espécie , Estresse Fisiológico
15.
Artigo em Inglês | MEDLINE | ID: mdl-28233058

RESUMO

In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.


Assuntos
Peixe Elétrico/genética , Peixe Elétrico/metabolismo , Órgão Elétrico/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/biossíntese , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Feminino , Expressão Gênica
17.
Nature ; 471(7336): 95-8, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368831

RESUMO

Annelida, the ringed worms, is a highly diverse animal phylum that includes more than 15,000 described species and constitutes the dominant benthic macrofauna from the intertidal zone down to the deep sea. A robust annelid phylogeny would shape our understanding of animal body-plan evolution and shed light on the bilaterian ground pattern. Traditionally, Annelida has been split into two major groups: Clitellata (earthworms and leeches) and polychaetes (bristle worms), but recent evidence suggests that other taxa that were once considered to be separate phyla (Sipuncula, Echiura and Siboglinidae (also known as Pogonophora)) should be included in Annelida. However, the deep-level evolutionary relationships of Annelida are still poorly understood, and a robust reconstruction of annelid evolutionary history is needed. Here we show that phylogenomic analyses of 34 annelid taxa, using 47,953 amino acid positions, recovered a well-supported phylogeny with strong support for major splits. Our results recover chaetopterids, myzostomids and sipunculids in the basal part of the tree, although the position of Myzostomida remains uncertain owing to its long branch. The remaining taxa are split into two clades: Errantia (which includes the model annelid Platynereis), and Sedentaria (which includes Clitellata). Ancestral character trait reconstructions indicate that these clades show adaptation to either an errant or a sedentary lifestyle, with alteration of accompanying morphological traits such as peristaltic movement, parapodia and sensory perception. Finally, life history characters in Annelida seem to be phylogenetically informative.


Assuntos
Anelídeos/classificação , Filogenia , Animais , Anelídeos/anatomia & histologia , Anelídeos/química , Etiquetas de Sequências Expressas , Genoma/genética , Genômica , Modelos Biológicos
18.
J Mol Evol ; 83(1-2): 61-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27481396

RESUMO

Voltage-gated sodium channels, Nav1, play a crucial role in the generation and propagation of action potentials and substantially contribute to the shape of their rising phase. The electric organ discharge (EOD) of African weakly electric fish (Mormyroidea) is the sum of action potentials fired from all electrocytes of the electric organ at the same time and hence voltage-gated sodium channels are one factor-together with the electrocyte's morphology and innervation pattern-that determines the properties of these EODs. Due to the fish-specific genome duplication, teleost fish possess eight copies of sodium channel genes (SCN), which encode for Nav1 channels. In mormyroids, SCN4aa is solely expressed in the electrocytes of the adult electric organ. In this study, we compared entire SCN4aa sequences of six species of the genus Campylomormyrus and identified nonsynonymous substitutions among them. SCN4aa in Campylomormyrus exhibits a much higher evolutionary rate compared to its paralog SCN4ab, whose expression is not restricted to the electric organ. We also found evidence for strong positive selection on the SCN4aa gene within Mormyridae and along the lineage ancestral to the Mormyridae. We have identified sites at which all nonelectric teleosts are monomorphic in their amino acid, but mormyrids have different amino acids. Our findings confirm the crucial role of SCN4aa in EOD evolution among mormyrid weakly electric fish. The inferred positive selection within Mormyridae makes this gene a prime candidate for further investigation of the divergent evolution of pulse-type EODs among closely related species.


Assuntos
Peixe Elétrico/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Canais de Sódio/genética , Animais , Órgão Elétrico/fisiologia , Evolução Molecular , Filogenia
19.
Mol Phylogenet Evol ; 101: 8-18, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27143239

RESUMO

African weakly-electric fishes (Mormyridae) are able to communicate through species-specific electric signals; this feature might have favoured the evolutionary radiation observed in this family (over 200 species) by acting as an effective pre-zygotic isolation mechanism. In the present study we used mitochondrial (cytb) and nuclear (rps7, scn4aa) markers in order to reconstruct a species-phylogeny and identify species boundaries for the genus Campylomormyrus, by applying inference methods based on the multispecies coalescent model. Additionally, we employed 16 microsatellite markers, landmark-based morphometric measurements, and electro-physiological analyses as independent lines of evidence to the results obtained from the sequence data. The results show that groups that are morphologically different are also significantly divergent at the genetic level, whereas morphologically similar groups, displaying dissimilar electric signals, do not show enough genetic diversity to be considered separate species. Furthermore, the data confirm the presence of a yet undescribed species within the genus Campylomormyrus.


Assuntos
Peixe Elétrico/classificação , Filogenia , Animais , Análise por Conglomerados , Peixe Elétrico/genética , Loci Gênicos , Repetições de Microssatélites/genética , Distribuição Normal , Análise de Componente Principal , Reprodutibilidade dos Testes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA