Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 89(5): 2483-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540367

RESUMO

UNLABELLED: Epstein-Barr virus (EBV) infection of B cells leads to the sequential activation of two viral promoters, Wp and Cp, resulting in the expression of six EBV nuclear antigens (EBNAs) and the viral Bcl2 homologue BHRF1. The viral transactivator EBNA2 is required for this switch from Wp to Cp usage during the initial stages of infection. EBNA2-dependent Cp transcription is mediated by the EBNA2 response element (E2RE), a region that contains at least two binding sites for cellular factors; one of these sites, CBF1, interacts with RBP-JK, which then recruits EBNA2 to the transcription initiation complex. Here we demonstrate that the B cell-specific transcription factor BSAP/Pax5 binds to a second site, CBF2, in the E2RE. Deletion of the E2RE in the context of a recombinant virus greatly diminished levels of Cp-initiated transcripts during the initial stages of infection but did not affect the levels of Wp-initiated transcripts or EBNA mRNAs. Consistent with this finding, viruses deleted for the E2RE were not markedly impaired in their ability to induce B cell transformation in vitro. In contrast, a larger deletion of the entire Cp region did reduce EBNA mRNA levels early after infection and subsequently almost completely ablated lymphoblastoid cell line (LCL) outgrowth. Notably, however, rare LCLs could be established following infection with Cp-deleted viruses, and these were indistinguishable from wild-type-derived LCLs in terms of steady-state EBV gene transcription. These data indicate that, unlike Wp, Cp is dispensable for the virus' growth-transforming activity. IMPORTANCE: Epstein-Barr virus (EBV), a B lymphotropic herpesvirus etiologically linked to several B cell malignancies, efficiently induces B cell proliferation leading to the outgrowth of lymphoblastoid cell lines (LCLs). The initial stages of this growth-transforming infection are characterized by the sequential activation of two viral promoters, Wp and Cp, both of which appear to be preferentially active in target B cells. In this work, we have investigated the importance of Cp activity in initiating B cell proliferation and maintaining LCL growth. Using recombinant viruses, we demonstrate that while Cp is not essential for LCL outgrowth in vitro, it enhances transformation efficiency by >100-fold. We also show that Cp, like Wp, interacts with the B cell-specific activator protein BSAP/Pax5. We suggest that EBV has evolved this two-promoter system to ensure efficient colonization of the host B cell system in vivo.


Assuntos
Linfócitos B/fisiologia , Linfócitos B/virologia , Transformação Celular Viral , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Regiões Promotoras Genéticas , Proliferação de Células , Humanos , Ligação Proteica , Transcrição Gênica , Proteínas Virais/metabolismo
2.
PLoS Pathog ; 10(8): e1004322, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25144360

RESUMO

CD8+ T cell responses to Epstein-Barr virus (EBV) lytic cycle expressed antigens display a hierarchy of immunodominance, in which responses to epitopes of immediate-early (IE) and some early (E) antigens are more frequently observed than responses to epitopes of late (L) expressed antigens. It has been proposed that this hierarchy, which correlates with the phase-specific efficiency of antigen presentation, may be due to the influence of viral immune-evasion genes. At least three EBV-encoded genes, BNLF2a, BGLF5 and BILF1, have the potential to inhibit processing and presentation of CD8+ T cell epitopes. Here we examined the relative contribution of these genes to modulation of CD8+ T cell recognition of EBV lytic antigens expressed at different phases of the replication cycle in EBV-transformed B-cells (LCLs) which spontaneously reactivate lytic cycle. Selective shRNA-mediated knockdown of BNLF2a expression led to more efficient recognition of immediate-early (IE)- and early (E)-derived epitopes by CD8+ T cells, while knock down of BILF1 increased recognition of epitopes from E and late (L)-expressed antigens. Contrary to what might have been predicted from previous ectopic expression studies in EBV-negative model cell lines, the shRNA-mediated inhibition of BGLF5 expression in LCLs showed only modest, if any, increase in recognition of epitopes expressed in any phase of lytic cycle. These data indicate that whilst BNLF2a interferes with antigen presentation with diminishing efficiency as lytic cycle progresses (IE>E>>L), interference by BILF1 increases with progression through lytic cycle (IE

Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Evasão da Resposta Imune/imunologia , Western Blotting , Desoxirribonucleases/imunologia , Técnicas de Silenciamento de Genes , Herpesvirus Humano 4/imunologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas Virais/imunologia
3.
J Virol ; 88(9): 5001-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24554662

RESUMO

UNLABELLED: The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic "sensitizer" protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor ß1 (TGF-ß1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-ß1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE: Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some B-cell-derived tumors in which viral genes play a key role in tumor cell emergence and progression. Here, we report for the first time that EBV can shut off a B-cell gene called BIK. When activated by a molecular signal called transforming growth factor ß1 (TGF-ß1), BIK plays an important role in killing unwanted B cells, including those infected by viruses. We describe the key EBV-B-cell molecular interactions that lead to BIK shutoff. These findings further our knowledge of how EBV prevents the death of its host cell during infection. They are also relevant to certain posttransplant lymphomas where unregulated cell growth is caused by EBV genes.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Apoptose , Linfócitos B/virologia , Regulação para Baixo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Proteínas de Membrana/biossíntese , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Proteínas Mitocondriais
4.
J Virol ; 85(23): 12362-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957300

RESUMO

The genome of Epstein-Barr virus (EBV), a gammaherpesvirus with potent B-cell growth-transforming ability, contains multiple copies of a 3-kb BamHI W repeat sequence; each repeat carries (i) a promoter (Wp) that initiates transformation by driving EBNA-LP and EBNA2 expression and (ii) the W1W2 exons encoding the functionally active repeat domain of EBNA-LP. The W repeat copy number of a virus therefore influences two potential determinants of its transforming ability: the number of available Wp copies and the maximum size of the encoded EBNA-LP. Here, using recombinant EBVs, we show that optimal B-cell transformation requires a minimum of 5 W repeats (5W); the levels of transforming ability fall progressively with viruses carrying 4, 3, and 2 W repeats, as do the levels of Wp-initiated transcripts expressed early postinfection (p.i.), while viruses with 1 copy of the wild-type W repeat (1W) and 0W are completely nontransforming. We therefore suggest that genetic analyses of EBV transforming function should ensure that wild-type and mutant strains have equal numbers (ideally at least 5) of W copies if the analysis is not to be compromised. Attempts to enhance the transforming function of low-W-copy-number viruses, via the activity of helper EBV strains or by gene repair, suggested that the critical defect is not related to EBNA-LP size but to the failure to achieve sufficiently strong coexpression of EBNA-LP and EBNA2 early postinfection. We further show by the results of ex vivo assays that EBV strains in the blood of infected individuals typically have a mean of 5 to 8 W copies, consistent with the view that evolution has selected for viruses with an optimal transforming function.


Assuntos
Linfócitos B/virologia , Transformação Celular Viral , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas Virais/metabolismo , Linfócitos B/metabolismo , Células Cultivadas , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/patogenicidade , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Virais/genética
5.
J Gen Virol ; 92(Pt 5): 1032-1043, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21248177

RESUMO

Polymorphisms in Epstein-Barr virus (EBV) latent genes can identify virus strains from different human populations and individual strains within a population. An Asian EBV signature has been defined almost exclusively from Chinese viruses, with little information from other Asian countries. Here we sequenced polymorphic regions of the EBNA1, 2, 3A, 3B, 3C and LMP1 genes of 31 Japanese strains from control donors and EBV-associated T/NK-cell lymphoproliferative disease (T/NK-LPD) patients. Though identical to Chinese strains in their dominant EBNA1 and LMP1 alleles, Japanese viruses were subtly different at other loci. Thus, while Chinese viruses mainly fall into two families with strongly linked 'Wu' or 'Li' alleles at EBNA2 and EBNA3A/B/C, Japanese viruses all have the consensus Wu EBNA2 allele but fall into two families at EBNA3A/B/C. One family has variant Li-like sequences at EBNA3A and 3B and the consensus Li sequence at EBNA3C; the other family has variant Wu-like sequences at EBNA3A, variants of a low frequency Chinese allele 'Sp' at EBNA3B and a consensus Sp sequence at EBNA3C. Thus, EBNA3A/B/C allelotypes clearly distinguish Japanese from Chinese strains. Interestingly, most Japanese viruses also lack those immune-escape mutations in the HLA-A11 epitope-encoding region of EBNA3B that are so characteristic of viruses from the highly A11-positive Chinese population. Control donor-derived and T/NK-LPD-derived strains were similarly distributed across allelotypes and, by using allelic polymorphisms to track virus strains in patients pre- and post-haematopoietic stem-cell transplant, we show that a single strain can induce both T/NK-LPD and B-cell-lymphoproliferative disease in the same patient.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/genética , Polimorfismo Genético , DNA Viral/química , DNA Viral/genética , Genótipo , Herpesvirus Humano 4/isolamento & purificação , Humanos , Filogeografia , Análise de Sequência de DNA , Proteínas da Matriz Viral/genética
6.
Blood Adv ; 4(19): 4775-4787, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33017468

RESUMO

Epstein-Barr virus (EBV)-associated T- and natural killer (NK)-cell malignancies, such as extranodal NK-/T-cell lymphoma (ENKTL), exhibit high chemoresistance and, accordingly, such patients have a poor prognosis. The rare nature of such cancers and nonmalignant T/NK lymphoproliferative disorders, such as chronic active EBV (CAEBV), has limited our understanding of the pathogenesis of these diseases. Here, we characterize a panel of ENKTL- and CAEBV-derived cell lines that had been established from human tumors to be used as preclinical models of these diseases. These cell lines were interleukin-2 dependent and found to carry EBV in a latency II gene-expression pattern. All cell lines demonstrated resistance to cell death induction by DNA damage-inducing agents, the current standard of care for patients with these malignancies. This resistance was not correlated with the function of the multidrug efflux pump, P-glycoprotein. However, apoptotic cell death could be consistently induced following treatment with A-1331852, a BH3-mimetic drug that specifically inhibits the prosurvival protein BCL-XL. A-1331852-induced apoptosis was most efficacious when prosurvival MCL-1 was additionally targeted, either by BH3-mimetics or genetic deletion. Xenograft models established from the ENKTL cell line SNK6 provided evidence that A-1331852 treatment could be therapeutically beneficial in vivo. The data here suggest that therapeutic targeting of BCL-XL would be effective for patients with EBV-driven T/NK proliferative diseases, however, MCL-1 could be a potential resistance factor.


Assuntos
Infecções por Vírus Epstein-Barr , Preparações Farmacêuticas , Apoptose , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Herpesvirus Humano 4 , Humanos , Células Matadoras Naturais
7.
Cell Death Differ ; 27(5): 1554-1568, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31645677

RESUMO

Epstein-Barr virus (EBV), which is ubiquitous in the adult population, is causally associated with human malignancies. Like many infectious agents, EBV has evolved strategies to block host cell death, including through expression of viral homologues of cellular BCL-2 pro-survival proteins (vBCL-2s), such as BHRF1. Small molecule inhibitors of the cellular pro-survival BCL-2 family proteins, termed 'BH3-mimetics', have entered clinical trials for blood cancers with the BCL-2 inhibitor venetoclax already approved for treatment of therapy refractory chronic lymphocytic leukaemia and acute myeloid leukaemia in the elderly. The generation of BH3-mimetics that could specifically target vBCL-2 proteins may be an attractive therapeutic option for virus-associated cancers, since these drugs would be expected to only kill virally infected cells with only minimal side effects on normal healthy tissues. To achieve this, a better understanding of the contribution of vBCL-2 proteins to tumorigenesis and insights into their biochemical functions is needed. In the context of Burkitt lymphoma (BL), BHRF1 expression conferred strong resistance to diverse apoptotic stimuli. Furthermore, BHRF1 expression in mouse haematopoietic stem and progenitor cells accelerated MYC-induced lymphoma development in a model of BL. BHRF1 interacts with the cellular pro-apoptotic BCL-2 proteins, BIM, BID, PUMA and BAK, but its capability to inhibit apoptosis could not be mapped solely to one of these interactions, suggesting plasticity is a key feature of BHRF1. Site-directed mutagenesis revealed a site in BHRF1 that was critical for its interaction with PUMA and blocking DNA-damage-induced apoptosis, identifying a potentially therapeutically targetable vulnerability in BHRF1.


Assuntos
Apoptose , Linfoma de Burkitt/patologia , Carcinogênese/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-bcl-2/química , Homologia de Sequência de Aminoácidos , Proteínas Virais/metabolismo , Animais , Apoptose/genética , Proteína 11 Semelhante a Bcl-2/metabolismo , Linfoma de Burkitt/virologia , Morte Celular , Linhagem Celular Tumoral , Citoproteção , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Latência Viral
8.
Cell Death Differ ; 25(2): 241-254, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28960205

RESUMO

While the association of Epstein-Barr virus (EBV) with Burkitt lymphoma (BL) has long been recognised, the precise role of the virus in BL pathogenesis is not fully resolved. EBV can be lost spontaneously from some BL cell lines, and these EBV-loss lymphoma cells reportedly have a survival disadvantage. Here we have generated an extensive panel of EBV-loss clones from multiple BL backgrounds and examined their phenotype comparing them to their isogenic EBV-positive counterparts. We report that, while loss of EBV from BL cells is rare, it is consistently associated with an enhanced predisposition to undergo apoptosis and reduced tumorigenicity in vivo. Importantly, reinfection of EBV-loss clones with EBV, but surprisingly not transduction with individual BL-associated latent viral genes, restored protection from apoptosis. Expression profiling and functional analysis of apoptosis-related proteins and transcripts in BL cells revealed that EBV inhibits the upregulation of the proapoptotic BH3-only proteins, BIM and PUMA. We conclude that latent EBV genes cooperatively enhance the survival of BL cells by suppression of the intrinsic apoptosis pathway signalling via inhibition of the potent apoptosis initiators, BIM and PUMA.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , Linfoma de Burkitt/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Apoptose/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Linfoma de Burkitt/patologia , Linhagem Celular , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Humanos , Proteínas Proto-Oncogênicas/antagonistas & inibidores
9.
Virology ; 474: 117-30, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25463610

RESUMO

We have validated a flexible, high-throughput and relatively inexpensive RT-QPCR array platform for absolute quantification of Epstein-Barr virus transcripts in different latent and lytic infection states. Several novel observations are reported. First, during infection of normal B cells, Wp-initiated latent gene transcripts remain far more abundant following activation of the Cp promoter than was hitherto suspected. Second, EBNA1 transcript levels are remarkably low in all forms of latency, typically ranging from 1 to 10 transcripts per cell. EBNA3A, -3B and -3C transcripts are likewise very low in Latency III, typically at levels similar to or less than EBNA1 transcripts. Thirdly, a subset of lytic gene transcripts is detectable in Burkitt lymphoma lines at low levels, including: BILF1, which has oncogenic properties, and the poorly characterized LF1, LF2 and LF3 genes. Analysis of seven African BL biopsies confirmed this transcription profile but additionally revealed significant expression of LMP2 transcripts.


Assuntos
Herpesvirus Humano 4/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Viral/análise , RNA Viral/genética , Linfócitos B/virologia , Linfoma de Burkitt/virologia , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Genes Virais , Humanos , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transcrição Gênica , Proteínas Virais/genética , Vírion/genética , Latência Viral/genética
10.
J Virol ; 80(21): 10700-11, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16920819

RESUMO

The Epstein-Barr virus (EBV) latent cycle promoter Wp, present in each tandemly arrayed copy of the BamHI W region in the EBV genome, drives expression of the EB viral nuclear antigens (EBNAs) at the initiation of virus-induced B-cell transformation. Thereafter, an alternative EBNA promoter, Cp, becomes dominant, Wp activity declines dramatically, and bisulfite sequencing of EBV-transformed lymphoblastoid cell lines (LCLs) shows extensive Wp methylation. Despite this, Wp is never completely silenced in LCLs. Here, using a combination of bisulfite sequencing and methylation-specific PCR, we show that in standard LCLs transformed with wild-type EBV isolates, some Wp copies always remain unmethylated, and in LCLs transformed with a recombinant EBV carrying just two BamHI W copies, Wp is completely unmethylated. Furthermore, we have analyzed rare LCLs, recently established using wild-type EBV isolates, and rare Burkitt lymphoma (BL) cell clones, recently established from tumors carrying EBNA2-deleted EBV genomes, which express EBNAs exclusively from Wp-initiated transcripts. Here, in sharp contrast to standard LCL and BL lines, all resident copies of Wp appear to be predominantly hypomethylated. Thus, studies of B cells with atypical patterns of Wp usage emphasize the strong correlation between the presence of unmethylated Wp sequences and promoter activity.


Assuntos
DNA Viral/química , DNA Viral/genética , Herpesvirus Humano 4/genética , Linfócitos B/virologia , Sequência de Bases , Linfoma de Burkitt/virologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Viral/genética , Metilação de DNA , Antígenos Nucleares do Vírus Epstein-Barr/genética , Genes Virais , Herpesvirus Humano 4/patogenicidade , Humanos , Regiões Promotoras Genéticas
11.
J Infect Dis ; 193(2): 287-97, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16362894

RESUMO

Recent work using a heteroduplex tracking assay (HTA) to identify resident viral sequences has suggested that patients with infectious mononucleosis (IM) who are undergoing primary Epstein-Barr virus (EBV) infection frequently harbor different EBV strains. Here, we examine samples from patients with IM by use of a new Epstein-Barr nuclear antigen 2 HTA alongside the established latent membrane protein 1 HTA. Coresident allelic sequences were detected in ex vivo blood and throat wash samples from 13 of 14 patients with IM; most patients carried 2 or more type 1 strains, 1 patient carried 2 type 2 strains, and 1 patient carried both virus types. In contrast, coresident strains were detected in only 2 of 14 patients by in vitro B cell transformation, despite screening >20 isolates/patient. We infer that coacquisition of multiple strains is common in patients with IM, although only 1 strain tends to be rescued in vitro; whether nonrescued strains are present in low abundance or are transformation defective remains to be determined.


Assuntos
DNA Viral/genética , Herpesvirus Humano 4/classificação , Herpesvirus Humano 4/genética , Mononucleose Infecciosa/virologia , Hibridização de Ácido Nucleico/métodos , Sangue/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/isolamento & purificação , Humanos , Ácidos Nucleicos Heteroduplexes , Faringe/virologia , Proteínas da Matriz Viral/genética
12.
J Virol ; 79(16): 10709-17, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16051863

RESUMO

Most Epstein-Barr virus (EBV)-positive Burkitt's lymphomas (BLs) carry a wild-type EBV genome and express EBV nuclear antigen 1 (EBNA1) selectively from the BamHI Q promoter (latency I). Recently we identified a distinct subset of BLs carrying both wild-type and EBNA2 gene-deleted (transformation-defective) viral genomes. The cells displayed an atypical "BamHI W promoter (Wp)-restricted" form of latency where Wp (rather than Qp) was active and EBNA1, -3A, -3B, -3C, and -LP were expressed in the absence of EBNA2 or latent membrane proteins 1 and 2. Here we present data strongly supporting the view that the EBNA2-deleted genome is transcriptionally active in these cells and the wild-type genome is silent. Single-cell cloning of three parental Wp-restricted BL lines generated clones carrying either both viral genomes or the EBNA2-deleted genome only, never clones with the wild-type genome only. All rescued clones displayed the Wp-restricted form of latency characteristic of the parent line and retained the original parent cell phenotype. Interestingly, Wp-restricted parent lines and derived clones were markedly more resistant to inducers of apoptosis than standard latency I BL lines. Furthermore, in vitro infection of EBV-negative BL lines with an EBNA2 gene-deleted virus generated EBV-positive converts with Wp-restricted latency and a similarly marked apoptosis resistance. We postulate that, in the subset of BLs displaying Wp-restricted latency, infection of a tumor progenitor cell with an EBNA2 gene-deleted virus has provided that cell with a survival advantage through broadening antigen expression to include the EBNA3 proteins.


Assuntos
Antígenos Virais/análise , Apoptose , Linfoma de Burkitt/virologia , Antígenos Nucleares do Vírus Epstein-Barr/análise , Linfoma de Burkitt/patologia , Linhagem Celular , Linhagem Celular Tumoral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/fisiologia , Genoma Viral , Humanos , Proteínas da Matriz Viral/genética , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA