Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastric Cancer ; 26(2): 234-249, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528833

RESUMO

BACKGROUND: Cancer stem cells (CSCs) are at the origin of tumour initiation and progression in gastric adenocarcinoma (GC). However, markers of metastasis-initiating cells remain unidentified in GC. In this study, we characterized CD44 variants expressed in GC and evaluated the tumorigenic and metastatic properties of CD44v3+ cells and their clinical significance in GC patients. METHODS: Using GC cell lines and patient-derived xenografts, we evaluated CD44+ and CD44v3+ GC cells molecular signature and their tumorigenic, chemoresistance, invasive and metastatic properties, and expression in patients-derived tissues. RESULTS: CD44v3+ cells, which represented a subpopulation of CD44+ cells, were detected in advanced preneoplastic lesions and presented CSCs chemoresistance and tumorigenic properties in vitro and in vivo. Molecular and functional analyses revealed two subpopulations of gastric CSCs: CD44v3+ CSCs with an epithelial-mesenchymal transition (EMT)-like signature, and CD44+/v3- CSCs with an epithelial-like signature; both were tumorigenic but CD44v3+ cells showed higher invasive and metastatic properties in vivo. CD44v3+ cells detected in the primary tumours of GC patients were associated with a worse prognosis. CONCLUSION: CD44v3 is a marker of a subpopulation of CSCs with metastatic properties in GC. The identification of metastasis-initiating cells in GC represents a major advance for further development of anti-metastatic therapeutic strategies.


Assuntos
Carcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Células-Tronco Neoplásicas/metabolismo , Carcinoma/patologia , Receptores de Hialuronatos , Transição Epitelial-Mesenquimal
2.
Int J Cancer ; 146(8): 2255-2267, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31489619

RESUMO

Gastric carcinomas (GC) are heterogeneous tumors, composed of a subpopulation of cluster of differentiation-44 (CD44)+ tumorigenic and chemoresistant cancer stem cells (CSC). YAP1 and TAZ oncoproteins (Y/T) interact with TEA domain family member 1 (TEAD) transcription factors to promote cell survival and proliferation in multiple tissues. Their activity and role in GC remain unclear. This work aimed to analyze Y/T-TEAD activity and molecular signature in gastric CSC, and to assess the effect of verteporfin, a Food and Drug Administration-approved drug preventing Y/T-TEAD interaction, on gastric CSC tumorigenic properties. Y/T-TEAD molecular signature was investigated using bioinformatical (KmPlot database), transcriptomic and immunostaining analyses in patient-derived GC and cell lines. Verteporfin effects on Y/T-TEAD transcriptional activity, CSC proliferation and tumorigenic properties were evaluated using in vitro tumorsphere assays and mouse models of patient-derived GC xenografts. High expressions of YAP1, TAZ, TEAD1, TEAD4 and their target genes were associated with low overall survival in nonmetastatic human GC patients (n = 444). This Y/T-TEAD molecular signature was enriched in CD44+ patient-derived GC cells and in cells resistant to conventional chemotherapy. Verteporfin treatment inhibited Y/T-TEAD transcriptional activity, cell proliferation and CD44 expression, and decreased the pool of tumorsphere-forming CD44+ /aldehyde dehydrogenase (ALDH)high gastric CSC. Finally, verteporfin treatment inhibited GC tumor growth in vivo; the residual tumor cells exhibited reduced expressions of CD44 and ALDH1, and more importantly, they were unable to initiate new tumorspheres in vitro. All these data demonstrate that Y/T-TEAD activity controls gastric CSC tumorigenic properties. The repositioning of verteporfin targeting YAP1/TAZ-TEAD activity could be a promising CSC-based strategy for the treatment of GC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Nucleares/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Transativadores/genética , Fatores de Transcrição/genética , Verteporfina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Receptores de Hialuronatos/biossíntese , Receptores de Hialuronatos/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Transcrição de Domínio TEA , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
3.
Cell Death Discov ; 10(1): 120, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453889

RESUMO

Gastric cancer's (GC) bad prognosis is usually associated with metastatic spread. Invasive cancer stem cells (CSC) are considered to be the seed of GC metastasis and not all CSCs are able to initiate metastasis. Targeting these aggressive metastasis-initiating CSC (MIC) is thus vital. Leukaemia inhibitory factor (LIF) is hereby used to target Hippo pathway oncogenic members, found to be induced in GC and associated with CSC features. LIF-treated GC cell lines, patient-derived xenograft (PDX) cells and/or CSC tumourspheres underwent transcriptomics, laser microdissection-associated proteomics, 2D and 3D invasion assays and in vivo xenograft in mice blood circulation. LIFR expression was analysed on tissue microarrays from GC patients and in silico from public databases. LIF-treated cells, especially CSC, presented decreased epithelial to mesenchymal transition (EMT) phenotype and invasion capacity in vitro, and lower metastasis initiation ability in vivo. These effects involved both the Hippo and Jak/Stat pathways. Finally, GC's high LIFR expression was associated with better clinical outcomes in patients. LIF treatment could thus represent a targeted anti-CSC strategy to fight against metastatic GC, and LIFR detection in primary tumours could constitute a potential new prognosis marker in this disease.

4.
Cancers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077851

RESUMO

BACKGROUND: Gastric cancer, the fifth most common cancer worldwide, is mainly linked to Helicobacter pylori infection. H. pylori induces chronic inflammation of the gastric mucosa associated with high oxidative stress. Our study aimed at assessing the implication of Nrf2, a major regulator of cellular redox homeostasis, in H. pylori-induced gastric carcinogenesis. METHODS: Using three different gastric epithelial cell lines, a non-cancerous (HFE-145) and two different subtypes of gastric cancer (AGS and MKN74), we analyzed the modulation of Nrf2 expression over time. After invalidation of Nrf2 by CRISPR-cas9, we assessed its role in H. pylori-induced epithelial-to-mesenchymal transition (EMT). Finally, we evaluated the expression of Nrf2 and ZEB1, a central EMT transcription factor, in human gastric tissues. RESULTS: We first demonstrated that the Nrf2 signaling pathway is differentially regulated depending on the infection stage. Rapidly and transiently activated, Nrf2 was downregulated 24 h post-infection in a VacA-dependent manner. We then demonstrated that Nrf2 invalidation leads to increased EMT, which is even exacerbated after H. pylori infection. Finally, Nrf2 expression tended to decrease in human patients' gastric mucosa infected with H. pylori. CONCLUSIONS: Our work supports the hypothesis that Nrf2 downregulation upon H. pylori infection participates in EMT, one of the most important events in gastric carcinogenesis.

5.
Cancers (Basel) ; 12(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707998

RESUMO

Cancer stem cells (CSCs) present chemo-resistance mechanisms contributing to tumour maintenance and recurrence, making their targeting of utmost importance in gastric cancer (GC) therapy. The Hippo pathway has been implicated in gastric CSC properties and was shown to be regulated by leukaemia inhibitory factor receptor (LIFR) and its ligand LIF in breast cancer. This study aimed to determine LIF's effect on CSC properties in GC cell lines and patient-derived xenograft (PDX) cells, which remains unexplored. LIF's treatment effect on CSC markers expression and tumoursphere formation was evaluated. The Hippo kinase inhibitor XMU-MP-1 and/or the JAK1 inhibitor Ruxolitinib were used to determine Hippo and canonical JAK/STAT pathway involvement in gastric CSCs' response to LIF. Results indicate that LIF decreased tumorigenic and chemo-resistant CSCs, in both GC cell lines and PDX cells. In addition, LIF increased activation of LATS1/2 Hippo kinases, thereby decreasing downstream YAP/TAZ nuclear accumulation and TEAD transcriptional activity. LIF's anti-CSC effect was reversed by XMU-MP-1 but not by Ruxolitinib treatment, highlighting the opposite effects of these two pathways downstream LIFR. In conclusion, LIF displays anti-CSC properties in GC, through Hippo kinases activation, and could in fine constitute a new CSCs-targeting strategy to help decrease relapse cases and bad prognosis in GC.

6.
Cells ; 9(6)2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545795

RESUMO

Helicobacter pylori infection, the main risk factor for gastric cancer (GC), leads to an epithelial-mesenchymal transition (EMT) of gastric epithelium contributing to gastric cancer stem cell (CSC) emergence. The Hippo pathway effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ) control cancer initiation and progression in many cancers including GC. Here, we investigated the role of TAZ in the early steps of H. pylori-mediated gastric carcinogenesis. TAZ implication in EMT, invasion, and CSC-related tumorigenic properties were evaluated in three gastric epithelial cell lines infected by H. pylori. We showed that H. pylori infection increased TAZ nuclear expression and transcriptional enhancer TEA domain (TEAD) transcription factors transcriptional activity. Nuclear TAZ and zinc finger E-box-binding homeobox 1 (ZEB1) were co-overexpressed in cells harboring a mesenchymal phenotype in vitro, and in areas of regenerative hyperplasia in gastric mucosa of H. pylori-infected patients and experimentally infected mice, as well as at the invasive front of gastric carcinoma. TAZ silencing reduced ZEB1 expression and EMT phenotype, and strongly inhibited invasion and tumorsphere formation induced by H. pylori. In conclusion, TAZ activation in response to H. pylori infection contributes to H. pylori-induced EMT, invasion, and CSC-like tumorigenic properties. TAZ overexpression in H. pylori-induced pre-neoplastic lesions and in GC could therefore constitute a biomarker of early transformation in gastric carcinogenesis.


Assuntos
Células Epiteliais/metabolismo , Mucosa Gástrica/patologia , Infecções por Helicobacter/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/fisiologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/patologia , Helicobacter pylori/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/metabolismo
7.
Cell Mol Gastroenterol Hepatol ; 9(2): 257-276, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31669263

RESUMO

BACKGROUND & AIMS: Gastric carcinoma is related mostly to CagA+-Helicobacter pylori infection, which disrupts the gastric mucosa turnover and elicits an epithelial-mesenchymal transition (EMT) and preneoplastic transdifferentiation. The tumor suppressor Hippo pathway controls stem cell homeostasis; its core, constituted by the large tumor suppressor 2 (LATS2) kinase and its substrate Yes-associated protein 1 (YAP1), was investigated in this context. METHODS: Hippo, EMT, and intestinal metaplasia marker expression were investigated by transcriptomic and immunostaining analyses in human gastric AGS and MKN74 and nongastric immortalized RPE1 and HMLE epithelial cell lines challenged by H pylori, and on gastric tissues of infected patients and mice. LATS2 and YAP1 were silenced using small interfering RNAs. A transcriptional enhanced associated domain (TEAD) reporter assay was used. Cell proliferation and invasion were evaluated. RESULTS: LATS2 and YAP1 appear co-overexpressed in the infected mucosa, especially in gastritis and intestinal metaplasia. H pylori via CagA stimulates LATS2 and YAP1 in a coordinated biphasic pattern, characterized by an early transient YAP1 nuclear accumulation and stimulated YAP1/TEAD transcription, followed by nuclear LATS2 up-regulation leading to YAP1 phosphorylation and targeting for degradation. LATS2 and YAP1 reciprocally positively regulate each other's expression. Loss-of-function experiments showed that LATS2 restricts H pylori-induced EMT marker expression, invasion, and intestinal metaplasia, supporting a role of LATS2 in maintaining the epithelial phenotype of gastric cells and constraining H pylori-induced preneoplastic changes. CONCLUSIONS: H pylori infection engages a number of signaling cascades that alienate mucosa homeostasis, including the Hippo LATS2/YAP1/TEAD pathway. In the host-pathogen conflict, which generates an inflammatory environment and perturbations of the epithelial turnover and differentiation, Hippo signaling appears as a protective pathway, limiting the loss of gastric epithelial cell identity that precedes gastric carcinoma development.


Assuntos
Transição Epitelial-Mesenquimal/imunologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Lesões Pré-Cancerosas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas de Ciclo Celular/metabolismo , Feminino , Mucosa Gástrica/microbiologia , Regulação Neoplásica da Expressão Gênica/imunologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Masculino , Metaplasia/genética , Metaplasia/microbiologia , Metaplasia/patologia , Camundongos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/imunologia , Fatores de Proteção , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA