Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann N Y Acad Sci ; 625: 532-9, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-1905502

RESUMO

Recent evidence suggest that exposure to volatile anesthetic agents causes a change in conductance through an undelineated potassium channel. With recently developed genetic and molecular techniques the Drosophila melanogaster (D.m.) genome can be manipulated to study the role that potassium ion channel function plays in anesthetic action. The IA potassium channel is encoded by the Shaker (Sh) locus on the X chromosome of D.m. Because this channel may be one of those involved in volatile anesthetic action, we tested the sensitivity to isoflurane in three Shaker strains with different degrees of dysfunctional IA conductance (Shnull greater than ShKS133 greater than Sh5). Anesthetic sensitivity was also examined in mutant strains of D.m. which express abnormalities either in other potassium channel conductances (eag, slo) or other ion conductances (para). The normally conducting wild type served as the control. Two-day-old adult D.m. were stimulated with a heat source during exposure to the volatile anesthetic isoflurane, and the number moving in response to the noxious stimulus was noted. After testing the Shaker and control strains at no fewer than 13 concentrations, the IC50S (isoflurane concentration in percent vol/vol at which 50% of the flies did not respond to the heat stimulus) were derived. The IC50 values for Sh 5 (0.89), Sh133 (1.29), and Shnull (1.37) were significantly different from the wild type (0.56). The rank order of insensitivity of these Shaker mutants corresponded to the extent of the alteration in IA conductance as established by previous studies in these mutants. Neither eag (0.66), para (0.48), nor slo (0.63) differed significantly from the wild type. These data suggest that the IA potassium channel plays a role in volatile anesthetic action.


Assuntos
Drosophila melanogaster/genética , Isoflurano/farmacologia , Mutação , Canais de Potássio/genética , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Temperatura Alta , Cromossomo X
2.
Child Psychiatry Hum Dev ; 27(2): 69-79, 1996.
Artigo em Inglês | MEDLINE | ID: mdl-8936793

RESUMO

Youth violence poses a major public health problem. It is important to find treatable predictors of recidivism. Our Subjects had committed offenses of physical and sexual assault. The personality dimensions of restraint and distress were rated by two independent and blind raters from narratives of offender's committing offenses, which were obtained at baseline during incarceration. Inter and intrarater kappas for each narrative were significant. In a 10-13 year follow-up, subjects lowest in self- restraint had significantly higher recidivism and their reoffenses differed in quality. Restraint may be influenced by clinical intervention and constitutes a new target in the treatment of delinquents.


Assuntos
Crime/psicologia , Delinquência Juvenil/psicologia , Violência/psicologia , Adolescente , Adulto , California , Crime/legislação & jurisprudência , Crime/prevenção & controle , Seguimentos , Humanos , Delinquência Juvenil/legislação & jurisprudência , Delinquência Juvenil/prevenção & controle , Masculino , Determinação da Personalidade , Recidiva , Fatores de Risco , Delitos Sexuais/legislação & jurisprudência , Delitos Sexuais/prevenção & controle , Delitos Sexuais/psicologia , Violência/legislação & jurisprudência , Violência/prevenção & controle
3.
Anesthesiology ; 73(2): 304-7, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1974396

RESUMO

Dexmedetomidine, a highly selective and potent agonist at alpha-2 adrenoceptors, produces a hypnotic-anesthetic action in rats. The mechanism for this response may involve an inhibitory G-protein and increased conductance through a potassium channel. To investigate this, the effects of pertussis toxin, a specific inactivator of inhibitory G-proteins, and 4-aminopyridine, a blocker of potassium channels, on the hypnotic-anesthetic response to dexmedetomidine were studied in rats. Pertussis toxin and 4-aminopyridine both decreased the hypnotic-anesthetic action of dexmedetomidine in a dose-dependent fashion. To preclude the possibility that pertussis toxin and 4-aminopyridine attenuated the hypnotic-anesthetic action of dexmedetomidine via indirect central nervous system excitation, the effects of pertussis toxin and 4-aminopyridine on the hypnotic-anesthetic action of pentobarbital also were assessed. Pentobarbital-induced hypnosis was not attenuated by either treatment. These results suggest that the receptor-effector mechanism for the hypnotic-anesthetic action of dexmedetomidine involves an inhibitory G-protein and increased conductance through a potassium channel.


Assuntos
4-Aminopiridina/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Hipnóticos e Sedativos/farmacologia , Imidazóis/farmacologia , Pentobarbital/farmacologia , Toxina Pertussis , Fatores de Virulência de Bordetella/farmacologia , 4-Aminopiridina/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Proteínas de Ligação ao GTP/antagonistas & inibidores , Masculino , Medetomidina , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Endogâmicos , Fatores de Tempo , Fatores de Virulência de Bordetella/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA