Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
3 Biotech ; 7(5): 332, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28955629

RESUMO

Biodegradation of plastics, which are the potential source of environmental pollution, has received a great deal of attention in the recent years. We aim to screen, identify, and characterize a bacterial strain capable of degrading high-density polyethylene (HDPE). In the present study, we studied HDPE biodegradation using a laboratory isolate, which was identified as Klebsiella pneumoniae CH001 (Accession No MF399051). The HDPE film was characterized by Universal Tensile Machine (UTM), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Atomic Force Microscope (AFM) before and after microbial incubation. We observed that this strain was capable of adhering strongly on HDPE surface and form a thick biofilm, when incubated in nutrient broth at 30 °C on 120 rpm for 60 days. UTM analysis showed a significant decrease in weight (18.4%) and reduction in tensile strength (60%) of HDPE film. Furthermore, SEM analysis showed the cracks on the HDPE surface, whereas AFM results showed an increase in surface roughness after bacterial incubation. Overall, these results indicate that K. pneumoniae CH001 can be used as potential candidate for HDPE degradation in eco-friendly and sustainable manner in the environment.

2.
3 Biotech ; 7(1): 73, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28452021

RESUMO

Polythene is considered as one of the important object used in daily life. Being versatile in nature and resistant to microbial attack, they effectively cause environmental pollution. In the present study, biodegradation of low-density polyethylene (LDPE) have been performed using fungal lab isolate Rhizopus oryzae NS5. Lab isolate fungal strain capable of adhering to LDPE surface was used for the biodegradation of LDPE. This strain was identified as Rhizopus oryzae NS5 (Accession No. KT160362). Fungal growth was observed on the surface of the polyethylene when cultured in potato dextrose broth at 30 °C and 120 rpm, for 1 month. LDPE film was characterized before and after incubation by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and universal tensile machine. About 8.4 ± 3% decrease (gravimetrically) in weight and 60% reduction in tensile strength of polyethylene was observed. Scanning electron microscope analysis showed hyphal penetration and degradation on the surface of polyethylene. Atomic force microscope analysis showed increased surface roughness after treatment with fungal isolate. A thick network of fungal hyphae forming a biofilm was also observed on the surface of the polyethylene pieces. Present study shows the potential of Rhizopus oryzae NS5 in polyethylene degradation in eco friendly and sustainable manner.

3.
Appl Radiat Isot ; 51(4): 359-66, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10464913

RESUMO

The uptake of Ba(II) and Sr(II) by hydrous ferric oxide (HFO) was studied as a function of contact time, concentration, temperature and pH of the respective adsorptive solutions employing the 'radiotracer technique'. The uptake of both the ions was found to increase with the increase in concentration, temperature and pH of the adsorptive solutions. Concentration dependence data fitted well to the Freundlich adsorption isotherm over the entire range of concentration (10(-2)-10(-7) M) and the uptake process followed first-order rate kinetics. The desorption experiments demonstrate the irreversible nature of the uptake process, however, in the presence of H+ ions, i.e. on acidification, an appreciable amount of metal ions were removed in the bulk solution. The radiation stability of hydrous ferric oxide towards the uptake of Ba(II) and Sr(II) was also examined by using samples of hydrous ferric oxide irradiated by neutrons and gamma-rays prior to be employing as sorbents. The presence of some mono- and divalent co-ions along with the studied ions suppressed their removal appreciably.


Assuntos
Bário/química , Compostos Férricos/química , Resíduos Radioativos , Estrôncio/química , Gerenciamento de Resíduos , Adsorção , Cátions Bivalentes , Cromatografia por Troca Iônica , Concentração de Íons de Hidrogênio , Cinética , Soluções , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA