Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 14(11): 3737-40, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22323014

RESUMO

First principles calculations are used for a systematic search of the lowest-energy (most-stable) structure of the recently synthesized Au(18)(SR)(14) cluster. A comparison of the calculated optical absorption and electronic circular dichroism spectra, which are highly sensitive to the cluster structure and chirality, with the experimental spectra of the glutathione-protected gold cluster, Au(18)(SG)(14), is used to discriminate between low-energy isomers of the Au(18)(SR)(14) (R = CH(3)) cluster. From the good agreement between calculated and measured spectra, it is predicted that the structure of the Au(18)(SR)(14) cluster consists of a prolate Au(8) core covered with two dimer (SR-Au-SR-Au-SR) and two trimer (SR-Au-SR-Au-SR-Au-SR) motifs. These results provide additional evidence on the existence of longer trimer motifs as protecting units of small thiolated gold clusters.

2.
Phys Chem Chem Phys ; 14(20): 7321-9, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22513485

RESUMO

We report results of a theoretical study, based on density functional theory (DFT), on the structural, electronic, optical, and chiroptical properties of small thiolated gold clusters, [Au(n)(SR)(m) (n = 12-15, 16-20; m = 9-12, 12-16)]. Some of these clusters correspond to those recently synthesized with the surfactant-free method. To study the cluster physical properties, we consider two cluster families with Au(6) and Au(8) cores, respectively, covered with dimer [Au(2)(SR)(3)] and trimer [Au(3)(SR)(4)] (CH(3) being the R group) motifs or their combinations. Our DFT calculations show, by comparing the relaxed structures of the [Au(6)[Au(2)(SR)(3)](3)](+), [Au(6)[Au(2)(SR)(3)](2)[Au(3)(SR)(4)]](+), [Au(6)[Au(2)(SR)(3)][Au(3)(SR)(4)](2)](+), and [Au(6)[Au(3)(SR)(4)](3)](+) cationic clusters, that there is an increasing distortion in the Au(6) core as each dimer is replaced by a longer trimer motif. For the clusters in the second family, Au(8)[Au(3)(SR)(4)](4), Au(8)[Au(2)(SR)(3)][Au(3)(SR)(4)](3), Au(8)[Au(2)(SR)(3)](2)[Au(3)(SR)(4)](2), Au(8)[Au(2)(SR)(3)](3)[Au(3)(SR)(4)], and Au(8)[Au(2)(SR)(3)](4), a smaller distortion of the Au(8) core is observed as dimer motifs are substituted by trimer ones. An interesting trend emerging from the present calculations shows that as the number of trimer motifs increases in the protecting layer of both Au(6) and Au(8) cores, the average of the interatomic Au(core)-S distances reduces. This shrinkage in the Au(core)-S distances is correlated with an increase of the cluster HOMO-LUMO (H-L) gap. From these results, it is predicted that a larger number of trimer motifs in the cluster protecting layer would induce larger H-L gaps. By analyzing the electronic transitions that characterize the optical absorption and circular dichroism spectra of the clusters under study, it is observed that the molecular orbitals involved are composed of comparable proportions of orbitals corresponding to atoms forming the cluster core and the protecting dimer and trimer motifs.

3.
J Phys Chem Lett ; 4(6): 975-981, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23687562

RESUMO

Determination of the total structure of molecular nanocrystals is an outstanding experimental challenge that has been met, in only a few cases, by single-crystal X-ray diffraction. Described here is an alternative approach that is of most general applicability and does not require the fabrication of a single crystal. The method is based on rapid, time-resolved nanobeam electron diffraction (NBD) combined with high-angle annular dark field scanning/transmission electron microscopy (HAADF-STEM) images in a probe corrected STEM microscope, operated at reduced voltages. The results are compared with theoretical simulations of images and diffraction patterns obtained from atomistic structural models derived through first-principles density functional theory (DFT) calculations. The method is demonstrated by application to determination of the structure of the Au144(SCH2CH2Ph)60 cluster.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA