Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(21): 211803, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856264

RESUMO

We report the first search for dark sectors performed at the NA64 experiment employing a high energy muon beam and a missing energy-momentum technique. Muons from the M2 beamline at the CERN Super Proton Synchrotron with a momentum of 160 GeV/c are directed to an active target. The signal signature consists of a single scattered muon with momentum <80 GeV/c in the final state, accompanied by missing energy, i.e., no detectable activity in the downstream calorimeters. For a total dataset of (1.98±0.02)×10^{10} muons on target, no event is observed in the expected signal region. This allows us to set new limits on the remaining (m_{Z^{'}},g_{Z^{'}}) parameter space of a new Z^{'} (L_{µ}-L_{τ}) vector boson which could explain the muon (g-2)_{µ} anomaly. Additionally, our study excludes part of the parameter space suggested by the thermal dark matter relic abundance. Our results pave the way to explore dark sectors and light dark matter with muon beams in a unique and complementary way to other experiments.

2.
Phys Rev Lett ; 126(21): 211802, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114842

RESUMO

We performed a search for a new generic X boson, which could be a scalar (S), pseudoscalar (P), vector (V), or an axial vector (A) particle produced in the 100 GeV electron scattering off nuclei, e^{-}Z→e^{-}ZX, followed by its invisible decay in the NA64 experiment at CERN. No evidence for such a process was found in the full NA64 dataset of 2.84×10^{11} electrons on target. We place new bounds on the S, P, V, A coupling strengths to electrons, and set constraints on their contributions to the electron anomalous magnetic moment a_{e}, |Δa_{X}|≲10^{-15}-10^{-13} for the X mass region 1 MeV≲m_{X}≲1 GeV. These results are an order of magnitude more sensitive compared to the current accuracy on a_{e} from the electron g-2 experiments and recent high-precision determination of the fine structure constant.

3.
Phys Rev Lett ; 125(8): 081801, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909809

RESUMO

We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as a shield, and would be observed either through their a(s)→γγ decay in the rest of the HCAL detector, or as events with a large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing of the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10^{11} electrons on target, allowing us to set new limits on the a(s)γγ-coupling strength for a(s) masses below 55 MeV.

4.
Phys Rev Lett ; 123(12): 121801, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633975

RESUMO

A search for sub-GeV dark matter production mediated by a new vector boson A^{'}, called a dark photon, is performed by the NA64 experiment in missing energy events from 100 GeV electron interactions in an active beam dump at the CERN SPS. From the analysis of the data collected in the years 2016, 2017, and 2018 with 2.84×10^{11} electrons on target no evidence of such a process has been found. The most stringent constraints on the A^{'} mixing strength with photons and the parameter space for the scalar and fermionic dark matter in the mass range ≲0.2 GeV are derived, thus demonstrating the power of the active beam dump approach for the dark matter search.

5.
Eur Phys J C Part Fields ; 81(10): 959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790033

RESUMO

We report the results of a search for a new vector boson ( A ' ) decaying into two dark matter particles χ 1 χ 2 of different mass. The heavier χ 2 particle subsequently decays to χ 1 and an off-shell Dark Photon A ' ∗ → e + e - . For a sufficiently large mass splitting, this model can explain in terms of new physics the recently confirmed discrepancy observed in the muon anomalous magnetic moment at Fermilab. Remarkably, it also predicts the observed yield of thermal dark matter relic abundance. A detailed Monte-Carlo simulation was used to determine the signal yield and detection efficiency for this channel in the NA64 setup. The results were obtained re-analyzing the previous NA64 searches for an invisible decay A ' → χ χ ¯ and axion-like or pseudo-scalar particles a → γ γ . With this method, we exclude a significant portion of the parameter space justifying the muon g-2 anomaly and being compatible with the observed dark matter relic density for A ' masses from 2 m e up to 390 MeV and mixing parameter ε between 3 × 10 - 5 and 2 × 10 - 2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA