Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 37(8): e23079, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37410022

RESUMO

Genistein is an isoflavone present in soybeans and is considered a bioactive compound due to its widely reported biological activity. We have previously shown that intraperitoneal genistein administration and diet supplementation activates the thermogenic program in rats and mice subcutaneous white adipose tissue (scWAT) under multiple environmental cues, including cold exposure and high-fat diet feeding. However, the mechanistic insights of this process were not previously unveiled. Uncoupling protein 1 (UCP1), a mitochondrial membrane polypeptide responsible for dissipating energy into heat, is considered the most relevant thermogenic marker; thus, we aimed to evaluate whether genistein regulates UCP1 transcription. Here we show that genistein administration to thermoneutral-housed mice leads to the appearance of beige adipocyte markers, including a sharp upregulation of UCP1 expression and protein abundance in scWAT. Reporter assays showed an increase in UCP1 promoter activity after genistein stimulation, and in silico analysis revealed the presence of estrogen (ERE) and cAMP (CRE) response elements as putative candidates of genistein activation. Mutation of the CRE but not the ERE reduced genistein-induced promoter activity by 51%. Additionally, in vitro and in vivo ChIP assays demonstrated the binding of CREB to the UCP1 promoter after acute genistein administration. Taken together, these data elucidate the mechanism of genistein-mediated UCP1 induction and confirm its potential applications in managing metabolic disorders.


Assuntos
Adipócitos Bege , Camundongos , Ratos , Animais , Ativação Transcricional , Adipócitos Bege/metabolismo , Genisteína/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética , Elementos de Resposta , Tecido Adiposo Marrom/metabolismo
2.
Am J Physiol Endocrinol Metab ; 320(1): E102-E112, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225719

RESUMO

Carbohydrate responsive element-binding protein (ChREBP) has been identified as a primary transcription factor that maintains energy homeostasis through transcriptional regulation of glycolytic, lipogenic, and gluconeogenic enzymes in response to a high-carbohydrate diet. Amino acids are important substrates for gluconeogenesis, but nevertheless, knowledge is lacking about whether this transcription factor regulates genes involved in the transport or use of these metabolites. Here, we demonstrate that ChREBP represses the expression of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) in response to a high-sucrose diet in rats by binding to a carbohydrate response element (ChoRE) site located -160 bp upstream of the transcriptional start site in the SNAT2 promoter region. Additionally, immunoprecipitation assays revealed that ChREBP and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) interact with each other, as part of the complex that repress SNAT2 expression. The interaction between these proteins was confirmed by an in vivo chromatin immunoprecipitation assay. These findings suggest that glucogenic amino acid uptake by the liver is controlled by ChREBP through the repression of SNAT2 expression in rats consuming a high-carbohydrate diet.NEW & NOTEWORTHY This study highlights the key role of carbohydrate responsive element-binding protein (ChREBP) in the fine-tuned regulation between glucose and amino acid metabolism in the liver via regulation of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) expression after the consumption of a high-carbohydrate diet. ChREBP binds to a carbohydrate response element (ChoRE) site in the SNAT2 promoter region and recruits silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor to reduce SNAT2 transcription. This study revealed that ChREBP prevents the uptake of glucogenic amino acids upon the consumption of a high-carbohydrate diet.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carboidratos da Dieta/farmacologia , Correpressor 2 de Receptor Nuclear/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicemia/análise , Glicemia/metabolismo , Imunoprecipitação da Cromatina , Dieta , Regulação para Baixo , Hepatócitos/metabolismo , Masculino , Correpressor 2 de Receptor Nuclear/genética , Cultura Primária de Células , Ratos , Ratos Wistar , Sacarose/farmacologia , Transcrição Gênica/efeitos dos fármacos
3.
Nutrients ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571315

RESUMO

Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.


Assuntos
Resistência à Insulina , MicroRNAs , Humanos , Epigênese Genética , Aminoácidos/metabolismo , Obesidade
4.
J Ethnopharmacol ; 312: 116522, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37080365

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chaya (Cnidoscolus aconitifolius (Mill.) I.M. Johnst) is an important component of the regular diet and traditional medicine of indigenous communities in Mexico. Customarily, Chaya is consumed as a beverage made of macerated leaf, cooked, or prepared in teas or infusions to empirically treat obesity, diabetes, gastrointestinal disorders, and kidney stones. The beneficial effects of Chaya can be attributed to the presence of protein, dietary fiber, vitamins, and especially polyphenols, which regulate mitochondrial function. Therefore, polyphenols present in Chaya extracts could be used to develop novel strategies to prevent and treat metabolic alterations related to mitochondrial dysfunction in the muscle and liver of subjects with obesity, type 2 diabetes, and cardiovascular diseases. However, limited information is available concerning the effect of Chaya extracts on mitochondrial activity in those tissues. AIM OF THE STUDY: The aim of this study was to evaluate the antioxidant capacity of an aqueous extract (AE) or mixed (methanol/acetone/water) extract (ME) of Chaya leaf and their effect on C2C12 myotubes and primary hepatocyte mitochondrial bioenergetics and fatty acid oxidation (FAO). MATERIALS AND METHODS: Total polyphenol content and antioxidant activity were determined using the Folin-Ciocalteu method and the oxygen radical absorbance capacity assay, respectively. The effect of AE and ME from Chaya leaf on mitochondrial activity and FAO of C2C12 myotubes and primary hepatocytes was evaluated using an extracellular flux analyzer. RESULTS: The AE and ME from Chaya leaf exhibited antioxidant activity and a polyphenol content similar to nopal, another plant used in Mexican traditional medicine. AE significantly (p < 0.05) decreased the maximal respiration and spare respiratory capacity (SRC) of C2C12 cells, whereas ME had little effect on C2C12 mitochondrial function. Conversely, ME significantly (p < 0.05) decreased SRC in primary hepatocytes, whereas AE increased maximal respiration and SRC at low doses (5 and 10 µM). Moreover, low doses of Chaya AE significantly (p < 0.05) increased AMPK phosphorylation, acyl-coenzyme A oxidase protein abundance, and palmitate oxidation in primary hepatocytes. CONCLUSION: The AE of Chaya leaf increases mitochondrial function and FAO of primary hepatocytes, indicating its potential to treat hepatic mitochondrial dysfunction underlying metabolic diseases.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Fibras Musculares Esqueléticas , Mitocôndrias , Hepatócitos , Polifenóis/farmacologia , Obesidade , Metabolismo Energético , Ácidos Graxos
5.
Metabolism ; 116: 154705, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33422545

RESUMO

The preservation of body proteins is essential to guarantee their functions in organisms. Therefore, the utilization of amino acids as energy substrates is regulated by a precise fine-tuned mechanism. Recent evidence suggests that the transcription factors peroxisome proliferator-activated receptor alpha (PPARα) and hepatocyte nuclear factor 4 alpha (HNF4α) are involved in this regulatory mechanism. Thus, the aim of this study was to determine how these transcription factors interact to regulate the expression of amino acid catabolism genes. In vivo studies using PPARα-knockout mice (Pparα-null) fed different amounts of dietary protein showed that in the absence of PPARα, there was a significant increase in HNF4α abundance in the liver, which corresponded with an increase in amino acid catabolizing enzyme (AACE) expression and the generation of increased amounts of postprandial urea. Moreover, this effect was proportional to the increase in dietary protein consumed. Chromatin immunoprecipitation assays showed that HNF4α can bind to the promoter of AACE serine dehydratase (SDS), an effect that was potentiated by dietary protein in the Pparα-null mice. The mechanistic studies revealed that the presence of retinoid X receptor alpha (RXRα) is essential to repress HNF4α activity in the presence of PPARα, and this interaction accelerates HNF4α degradation via the proteasome pathway. These results showed that PPARα can downregulate liver amino acid catabolism in the presence of RXRα by inhibiting HNF4α activity.


Assuntos
Aminoácidos/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , PPAR alfa/fisiologia , Receptor X Retinoide alfa/fisiologia , Animais , Regulação para Baixo/genética , Células HEK293 , Células Hep G2 , Humanos , Masculino , Metabolismo/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Receptor X Retinoide alfa/genética
6.
J Nutr Biochem ; 94: 108751, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33915261

RESUMO

Diets rich in mono or polyunsaturated fats have been associated with a healthy phenotype, but there is controversial evidence about coconut oil (CO), which is rich in saturated medium-chain fatty acids. Therefore, the purpose of the present work was to study whether different types of oils rich in polyunsaturated (soybean oil, SO), monounsaturated (olive oil, OO), or saturated fatty acids (coconut oil, CO) can regulate the gut microbiota, insulin sensitivity, inflammation, mitochondrial function in wild type and PPARα KO mice. The group that received SO showed the highest microbial diversity, increase in Akkermansia muciniphila, high insulin sensitivity and low grade inflammation, The OO group showed similar insulin sensitivity and insulin signaling than SO, increase in Bifidobacterium, increase in fatty acid oxidation and low grade inflammation. The CO consumption led to the lowest bacterial diversity, a 9-fold increase in the LPS concentration leading to metabolic endotoxemia, hepatic steatosis, increased lipogenesis, highest LDL-cholesterol concentration and the lowest respiratory capacity and fatty acid oxidation in the mitochondria. The absence of PPARα decreased alpha diversity and increased LPS concentration particularly in the CO group, and increased insulin sensitivity in the groups fed SO or OO. These results indicate that consuming mono or polyunsaturated fatty acids produced health benefits at the recommended intake but a high concentration of oils (three times the recommended oil intake in rodents) significantly decreased the microbial alpha-diversity independent of the type of oil.


Assuntos
Óleo de Coco/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Azeite de Oliva/farmacologia , PPAR alfa/metabolismo , Óleo de Soja/farmacologia , Animais , Bactérias/classificação , Bactérias/genética , Células Cultivadas , Biologia Computacional , DNA Bacteriano/genética , Fezes/química , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Intolerância à Glucose , Hepatócitos/efeitos dos fármacos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , PPAR alfa/genética , RNA Bacteriano/genética , RNA Ribossômico 16S , Distribuição Aleatória , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
Metabolism ; 103: 154048, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843339

RESUMO

OBJECTIVE: Angiotensin-(1-7) [Ang-(1-7)], a component of the renin angiotensin system, is a vasodilator that exerts its effects primarily through the Mas receptor. The discovery of the Mas receptor in white adipose tissue (WAT) suggests an additional role for this peptide. The aim of the present study was to assess whether Ang-(1-7) can induce the expression of thermogenic genes in white adipose tissue and increase mitochondrial respiration in adipocytes. MATERIALS/METHODS: Stromal Vascular fraction (SVF)-derived from mice adipose tissue was stimulated for one week with Ang-(1-7), then expression of beige markers and mitochondrial respiration were assessed. Mas+/+ and Mas-/- mice fed a control diet or a high fat-sucrose diet (HFSD) were exposed to a short or long term infusion of Ang-(1-7) and body weight, body fat, energy expenditure, cold resistance and expression of beige markers were assessed. Also, transgenic rats overexpressing Ang-(1-7) were fed with a control diet or a high fat-sucrose diet and the same parameters were assessed. Ang-(1-7) circulating levels from human subjects with different body mass index (BMI) or age were measured. RESULTS: Incubation of adipocytes derived from SVF with Ang-(1-7) increased the expression of beige markers. Infusion of Ang-(1-7) into lean and obese Mas+/+mice also induced the expression of Ucp1 and some beige markers, an effect not observed in Mas-/- mice. Mas-/- mice had increased body weight gain and decreased cold resistance, whereas rats overexpressing Ang-(1-7) showed the opposite effects. Overexpressing rats exposed to cold developed new thermogenic WAT in the anterior interscapular area. Finally, in human subjects the higher the BMI, low circulating concentration of Ang-(1-7) levels were detected. Similarly, the circulating levels of Ang-(1-7) peptide were reduced with age. CONCLUSION: These data indicate that Ang-(1-7) stimulates beige markers and thermogenesis via the Mas receptor, and this evidence suggests a potential therapeutic use to induce thermogenesis of WAT, particularly in obese subjects that have reduced circulating concentration of Ang-(1-7).


Assuntos
Tecido Adiposo Bege/efeitos dos fármacos , Angiotensina I/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Termogênese/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Células Cultivadas , Metabolismo Energético/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Transgênicos , Receptores Acoplados a Proteínas G/genética , Termogênese/genética , Adulto Jovem
8.
Genes Nutr ; 10(2): 452, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576393

RESUMO

The liver is the main organ involved in the metabolism of amino acids (AA), which are oxidized by amino acid catabolizing enzymes (AACE). Peroxisome proliferator-activated receptor-α (PPARα) stimulates fatty acid ß-oxidation, and there is evidence that it can modulate hepatic AA oxidation during the transition of energy fuels. To understand the role and mechanism of PPARα's regulation of AA catabolism, the metabolic and molecular adaptations of Ppara-null mice were studied. The role of PPARα on AA metabolism was examined by in vitro and in vivo studies. In wild-type and Ppara-null mice, fed increasing concentrations of the dietary protein/carbohydrate ratio, we measured metabolic parameters, and livers were analyzed by microarray analysis, histology and Western blot. Functional enrichment analysis, EMSA and gene reporter assays were performed. Ppara-null mice presented increased expression of AACE in liver affecting AA, lipid and carbohydrate metabolism. Ppara-null mice had increased glucagon/insulin ratio (7.2-fold), higher serum urea (73.1 %), lower body protein content (19.7 %) and decreased several serum AA in response to a high-protein/low-carbohydrate diet. A functional network of differentially expressed genes, suggested that changes in the expression of AACE were regulated by an interrelationship between PPARα and HNF4α. Our data indicated that the expression of AACE is down-regulated through PPARα by attenuating HNF4α transcriptional activity as observed in the serine dehydratase gene promoter. PPARα via HNF4α maintains body protein metabolic homeostasis by down-regulating genes involved in amino acid catabolism for preserving body nitrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA