Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17050, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273533

RESUMO

Tidal salt marshes produce and emit CH4 . Therefore, it is critical to understand the biogeochemical controls that regulate CH4 spatial and temporal dynamics in wetlands. The prevailing paradigm assumes that acetoclastic methanogenesis is the dominant pathway for CH4 production, and higher salinity concentrations inhibit CH4 production in salt marshes. Recent evidence shows that CH4 is produced within salt marshes via methylotrophic methanogenesis, a process not inhibited by sulfate reduction. To further explore this conundrum, we performed measurements of soil-atmosphere CH4 and CO2 fluxes coupled with depth profiles of soil CH4 and CO2 pore water gas concentrations, stable and radioisotopes, pore water chemistry, and microbial community composition to assess CH4 production and fate within a temperate tidal salt marsh. We found unexpectedly high CH4 concentrations up to 145,000 µmol mol-1 positively correlated with S2- (salinity range: 6.6-14.5 ppt). Despite large CH4 production within the soil, soil-atmosphere CH4 fluxes were low but with higher emissions and extreme variability during plant senescence (84.3 ± 684.4 nmol m-2 s-1 ). CH4 and CO2 within the soil pore water were produced from young carbon, with most Δ14 C-CH4 and Δ14 C-CO2 values at or above modern. We found evidence that CH4 within soils was produced by methylotrophic and hydrogenotrophic methanogenesis. Several pathways exist after CH4 is produced, including diffusion into the atmosphere, CH4 oxidation, and lateral export to adjacent tidal creeks; the latter being the most likely dominant flux. Our findings demonstrate that CH4 production and fluxes are biogeochemically heterogeneous, with multiple processes and pathways that can co-occur and vary in importance over the year. This study highlights the potential for high CH4 production, the need to understand the underlying biogeochemical controls, and the challenges of evaluating CH4 budgets and blue carbon in salt marshes.


Las marismas salinas producen y emiten CH4 . Por lo tanto, es esencial comprender los controles biogeoquímicos que regulan la dinámica espacial y temporal del CH4 en estos humedales. El paradigma predominante asume que la metanogénesis acetoclástica es la vía dominante para la producción de CH4 y que altas concentraciones de salinidad inhiben la producción de CH4 en estos ecosistemas. Hay evidencia que el CH4 se produce las marismas salinas a través de la metanogénesis metilotrófica, un proceso no inhibido por la reducción del sulfato. Para explorar esta paradoja, realizamos mediciones de los flujos de CH4 y CO2 del suelo a la atmósfera junto con perfiles de concentraciones de CH4 y CO2 en el suelo, isótopos estables y radioisótopos, química del agua y composición de la comunidad microbiana para evaluar la producción y el destino del CH4 en una marisma salina templada. Encontramos concentraciones de CH4 sorprendentemente altas de hasta 145,000 µmol mol−1 correlacionadas positivamente con S2− (rango de salinidad: 6.6 a 14.5 ppt). A pesar de la gran producción de CH4 en el suelo, los flujos de CH4 del suelo a la atmósfera fueron bajos, pero con mayores emisiones y variabilidad extrema durante la época de senescencia de las plantas (84.3 ± 684.4 nmol m−2 s−1 ). El CH4 y el CO2 en el suelo se produjeron a partir de carbono joven, con la mayoría de los valores Δ14 C-CH4 y Δ14 C-CO2 en o por encima de valores modernos. Encontramos evidencia de que el CH4 en los suelos fue producido por metanogénesis metilotrófica e hidrogenotrófica. Existen varias vías que el CH4 producido sigue, incluida la difusión hacia la atmósfera, la oxidación del CH4 y la exportación lateral a arroyos adyacentes a la marisma; siendo este último el flujo dominante más probable. Nuestros hallazgos demuestran que la producción y los flujos de CH4 son biogeoquímicamente heterogéneos, con múltiples procesos y vías que pueden coexistir y variar en importancia a lo largo del año. Este estudio destaca el potencial de alta producción de CH4 , la necesidad de comprender los controles biogeoquímicos de la producción de CH4 y los retos que existen para evaluar las reservas de CH4 y el carbono azul en marismas salinas.


Assuntos
Solo , Áreas Alagadas , Solo/química , Metano , Dióxido de Carbono/análise , Carbono , Água
2.
J Environ Manage ; 280: 111755, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334629

RESUMO

The Defense Coastal/Estuarine Research Program (DCERP) was a 10-year multi-investigator project funded by the Department of Defense to improve understanding of ecosystem processes and their interactions with natural and anthropogenic stressors at the Marine Corps Base Camp Lejeune (MCBCL) located in coastal North Carolina. The project was aimed at facilitating ecosystem-based management (EBM) at the MCBCL and other coastal military installations. Because of its scope, interdisciplinary character, and duration, DCERP embodied many of the opportunities and challenges associated with EBM, including the need for explicit goals, system models, long-term perspectives, systems complexity, change inevitability, consideration of humans as ecosystem components, and program adaptability and accountability. We describe key elements of this program, its contributions to coastal EBM, and its relevance as an exemplar of EBM.


Assuntos
Ecossistema , Militares , Biodiversidade , Carbono , Mudança Climática , Conservação dos Recursos Naturais , Humanos , North Carolina , Água
3.
Rapid Commun Mass Spectrom ; 34(1): e8569, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472482

RESUMO

RATIONALE: The isotope ratios of nitrogen (15 N/14 N) and oxygen (18 O/16 O) in nitrite (NO2 - ) can be measured by conversion of the nitrite into nitrous oxide (N2 O) with azide, followed by mass spectrometric analysis of N2 O by gas chromatography isotope ratio mass spectrometry (GC/IRMS). While applying this method to brackish samples, we noticed that the N and O isotope ratio measurements of NO2 - are highly sensitive to sample salinity and to the pH at which samples are preserved. METHODS: We investigated the influence of sample salinity and sample preservation pH on the N and O isotope ratios of the N2 O produced from the reaction of NO2 - with azide. The N2 O isotope ratios were measured by GC/IRMS. RESULTS: Under the experimental reaction conditions, the conversion of NO2 - into N2 O was less complete in lower salinity solutions, resulting in respective N and O isotopic offsets of +2.5‰ and -14.0‰ compared with seawater solutions. Differences in salinity were also associated with differences in the fraction of O atoms exchanged between NO2 - and water during the reaction. Similarly, aqueous NO2 - samples preserved at elevated pH values resulted in the incomplete conversion of NO2 - into N2 O by azide, and consequent pH-dependent isotopic offsets, as well as differences in the fraction of O atoms exchanged with water. The addition of sodium chloride to the reaction matrix of samples and standards largely mitigated salinity-dependent isotopic offsets in the N2 O product, and nearly homogenized the fraction of O atom exchange among samples of different salinity. A test of the hypobromite-azide method to measure N isotope ratios of ammonium by conversion into NO2 - then N2 O revealed no influence of sample salinity on the N isotope ratios of the N2 O product. CONCLUSIONS: We outline recommendations to mitigate potential matrix effects among samples and standards, to improve the accuracy of N and O isotope ratios in NO2 - measured with the azide method.

4.
Environ Sci Technol ; 53(3): 1206-1216, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30605314

RESUMO

Measurements of the stable isotope ratios of nitrogen (15N/14N) and oxygen (18O/16O) in nitrate (NO3-) enable identification of sources, dispersal, and fate of natural and contaminant NO3- in aquatic environments. The 18O/16O of NO3- produced by nitrification is often assumed to reflect the proportional contribution of oxygen atom sources, water, and molecular oxygen, in a 2:1 ratio. Culture and seawater incubations, however, indicate oxygen isotopic equilibration between nitrite (NO2-) and water, and kinetic isotope effects for oxygen atom incorporation, which modulate the NO3- 18O/16O produced during nitrification. To investigate the influence of kinetic and equilibrium effects on the isotopic composition of NO3- produced from the nitrification of ammonia (NH3), we incubated streamwater supplemented with ammonium (NH4+) and increments of 18O-enriched water. Resulting NO3- 18O/16O ratios showed (1) a disproportionate sensitivity to the 18O/16O ratio of water, mediated by isotopic equilibration between water and NO2-, as well as (2) kinetic isotope discrimination during O atom incorporation from molecular oxygen and water. Empirically, the NO3- 18O/16O ratios thus produced fortuitously converge near the 18O/16O ratio of water. More elevated NO3- 18O/16O values commonly reported in soils and oxic groundwater may thus derive from processes additional to nitrification, including NO3- reduction.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Nitratos , Nitrificação , Nitritos , Isótopos de Nitrogênio , Isótopos de Oxigênio
5.
Environ Sci Technol ; 49(20): 12169-77, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26401911

RESUMO

Anaerobic ammonium oxidation (anammox) couples the oxidation of ammonium with the reduction of nitrite, producing N2. The presence and activity of anammox bacteria in groundwater were investigated at multiple locations in an aquifer variably affected by a large, wastewater-derived contaminant plume. Anammox bacteria were detected at all locations tested using 16S rRNA gene sequencing and quantification of hydrazine oxidoreductase (hzo) gene transcripts. Anammox and denitrification activities were quantified by in situ (15)NO2(-) tracer tests along anoxic flow paths in areas of varying ammonium, nitrate, and organic carbon abundances. Rates of denitrification and anammox were determined by quantifying changes in (28)N2, (29)N2, (30)N2, (15)NO3(-), (15)NO2(-), and (15)NH4(+) with groundwater travel time. Anammox was present and active in all areas tested, including where ammonium and dissolved organic carbon concentrations were low, but decreased in proportion to denitrification when acetate was added to increase available electron supply. Anammox contributed 39-90% of potential N2 production in this aquifer, with rates on the order of 10 nmol N2-N L(-1) day(-1). Although rates of both anammox and denitrification during the tracer tests were low, they were sufficient to reduce inorganic nitrogen concentrations substantially during the overall groundwater residence times in the aquifer. These results demonstrate that anammox activity in groundwater can rival that of denitrification and may need to be considered when assessing nitrogen mass transport and permanent loss of fixed nitrogen in aquifers.


Assuntos
Compostos de Amônio/metabolismo , Água Doce/química , Água Subterrânea/química , Nitrogênio/isolamento & purificação , Anaerobiose , Bactérias/genética , Biodegradação Ambiental , Desnitrificação , Água Doce/microbiologia , Gases/análise , Geografia , Água Subterrânea/microbiologia , Massachusetts , Oxirredução , Filogenia , Fatores de Tempo
6.
Environ Sci Technol ; 49(4): 2180-7, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25594316

RESUMO

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common constituent of military explosives. Despite RDX contamination at numerous U.S. military facilities and its mobility to aquatic systems, the fate of RDX in marine systems remains largely unknown. Here, we provide RDX mineralization pathways and rates in seawater and sediments, highlighting for the first time the importance of the denitrification pathway in determining the fate of RDX-derived N. (15)N nitro group labeled RDX ((15)N-[RDX], 50 atom %) was spiked into a mesocosm simulating shallow marine conditions of coastal Long Island Sound, and the (15)N enrichment of N2 (δ(15)N2) was monitored via gas bench isotope ratio mass spectrometry (GB-IRMS) for 21 days. The (15)N tracer data were used to model RDX mineralization within the context of the broader coastal marine N cycle using a multicompartment time-stepping model. Estimates of RDX mineralization rates based on the production and gas transfer of (15)N2O and (15)N2 ranged from 0.8 to 10.3 µmol d(-1). After 22 days, 11% of the added RDX had undergone mineralization, and 29% of the total removed RDX-N was identified as N2. These results demonstrate the important consideration of sediment microbial communities in management strategies addressing cleanup of contaminated coastal sites by military explosives.


Assuntos
Poluentes Ambientais/análise , Substâncias Explosivas/análise , Sedimentos Geológicos/química , Nitrogênio/química , Água do Mar/química , Triazinas/análise , Desnitrificação , Recuperação e Remediação Ambiental/métodos , Modelos Químicos , Estrutura Molecular , Nitrogênio/análise
7.
Environ Sci Technol ; 49(20): 12223-31, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26375037

RESUMO

2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.


Assuntos
Ecossistema , Marcação por Isótopo , Água do Mar/química , Trinitrotolueno/análise , Minerais/química , Nitrogênio/análise , Isótopos de Nitrogênio , Material Particulado/análise , Solubilidade , Poluentes Químicos da Água/análise
8.
Arch Environ Contam Toxicol ; 68(4): 718-28, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25451633

RESUMO

The bioconcentration factor (BCF) was measured for 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in seven different marine species of varying trophic levels. Time series and concentration gradient treatments were used for water column and tissue concentrations of TNT, RDX, and their environmentally important derivatives 2-amino-4,6-dintrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT). BCF values ranged from 0.0031 to 484.5 mL g(-1) for TNT and 0.023 to 54.83 mL g(-1) for RDX. The use of log K ow value as an indicator was evaluated by adding marine data from this study to previously published data. For the munitions in this study, log K ow value was a good indicator in the marine environment. The initial uptake and elimination rates of TNT and RDX for Fucus vesiculosus were 1.79 and 0.24 h(-1) for TNT and 0.50 and 0.0035 h(-1) for RDX respectively. Biotransformation was observed in all biota for both TNT and RDX. Biotransformation of TNT favored 4-ADNT over 2-ADNT at ratios of 2:1 for F. vesiculosus and 3:1 for Mytilus edulis. Although RDX derivatives were measureable, the ratios of RDX derivatives were variable with no detectable trend. Previous approaches for measuring BCF in freshwater systems compare favorably with these experiments with marine biota, yet significant gaps on the ultimate fate of munitions within the biota exist that may be overcome with the use stable isotope-labeled munitions substrates.


Assuntos
Organismos Aquáticos/metabolismo , Monitoramento Ambiental , Triazinas/metabolismo , Trinitrotolueno/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biota , Água do Mar/química
9.
J Environ Manage ; 150: 206-215, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25500137

RESUMO

Groundwater nitrogen processing was examined in a restored black needlerush (Juncus roemerianus) marsh to assess its potential for removing land-derived nitrogen pollution. Two restoration designs, one initially planted at 50% cover (half density plots) and the other one at 100% cover (full density plots), were compared with non-vegetated controls. The introduction via groundwater of a NO3(-) solution with a conservative tracer (Br(-)) and labeled isotopically ((15)N) allowed calculation of nitrogen removal in the plots following two methods. The first method used changes in the ratio [NOx]:[Br(-)] as the groundwater plume traveled through the plot, and the second method relied on balancing (15)N input with (15)N export. Both methods showed ≈97% of the N from the simulated groundwater plume was removed (i.e. not delivered to the open waters of the adjacent estuary) in vegetated plots and ≈86% was removed in non-vegetated controls. The most dominant routes of N removal from the introduced solution were N2 production and assimilation into macrophyte biomass, which were similar in magnitude for the vegetated plots, whereas N2 production dominated in the unvegetated plots. The majority of N removed from the introduced solution occurred in the first 30 cm the solution traveled in the vegetated treatments. In addition, ambient porewater concentrations of dissolved inorganic nitrogen (DIN) were similar between full and half density plots, but lower than the non-vegetated control (≈8.5× and 7.5×), suggesting full and half density plots removed more DIN than non-vegetated plots. These results suggest that restoring marshes by planting 50% of the area may be a more cost-effective restoration design in terms of mitigating land-derived nutrient pollution than planting 100% of the area since it requires less effort and cost while removing similar quantities of N.


Assuntos
Água Subterrânea/química , Nitrogênio/química , Áreas Alagadas , Conservação dos Recursos Naturais , Golfo do México , Humanos , México , Árvores/crescimento & desenvolvimento
10.
Appl Environ Microbiol ; 79(1): 168-76, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23087029

RESUMO

Anammox and denitrification mediated by bacteria are known to be the major microbial processes converting fixed N to N(2) gas in various ecosystems. Codenitrification and denitrification by fungi are additional pathways producing N(2) in soils. However, fungal codenitrification and denitrification have not been well investigated in agricultural soils. To evaluate bacterial and fungal processes contributing to N(2) production, molecular and (15)N isotope analyses were conducted with soil samples collected at six different agricultural fields in the United States. Denitrifying and anammox bacterial abundances were measured based on quantitative PCR (qPCR) of nitrous oxide reductase (nosZ) and hydrazine oxidase (hzo) genes, respectively, while the internal transcribed spacer (ITS) of Fusarium oxysporum was quantified to estimate the abundance of codenitrifying and denitrifying fungi. (15)N tracer incubation experiments with (15)NO(3)(-) or (15)NH(4)(+) addition were conducted to measure the N(2) production rates from anammox, denitrification, and codenitrification. Soil incubation experiments with antibiotic treatments were also used to differentiate between fungal and bacterial N(2) production rates in soil samples. Denitrifying bacteria were found to be the most abundant, followed by F. oxysporum based on the qPCR assays. The potential denitrification rates by bacteria and fungi ranged from 4.118 to 42.121 nmol N(2)-N g(-1) day(-1), while the combined potential rates of anammox and codenitrification ranged from 2.796 to 147.711 nmol N(2)-N g(-1) day(-1). Soil incubation experiments with antibiotics indicated that fungal codenitrification was the primary process contributing to N(2) production in the North Carolina soil. This study clearly demonstrates the importance of fungal processes in the agricultural N cycle.


Assuntos
Amônia/metabolismo , Bactérias/metabolismo , Biodiversidade , Biota , Desnitrificação , Fungos/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Fungos/classificação , Fungos/genética , Dados de Sequência Molecular , Nitrogênio/metabolismo , North Carolina , Oxirredução , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
11.
Extremophiles ; 17(2): 289-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340764

RESUMO

To extend the knowledge of anaerobic ammonium oxidation (anammox) habitats, bacterial communities were examined in two hypersaline sulphidic basins in Eastern Mediterranean Sea. The 2 m thick seawater-brine haloclines of the deep anoxic hypersaline basins Bannock and L'Atalante were sampled in intervals of 10 cm with increasing salinity. (15)N isotope pairing incubation experiments showed the production of (29)N2 and (30)N2 gases in the chemoclines, ranging from 6.0 to 9.2 % salinity of the L'Atalante basin. Potential anammox rates ranged from 2.52 to 49.65 nmol N2 L(-1) day(-1) while denitrification was a major N2 production pathway, accounting for more than 85.5 % of total N2 production. Anammox-related 16S rRNA genes were detected along the L'Atalante and Bannock haloclines up to 24 % salinity, and the amplification of the hydrazine synthase genes (hzsA) further confirmed the presence of anammox bacteria in Bannock. Fluorescence in situ hybridisation and sequence analysis of 16S rRNA genes identified representatives of the marine anammox genus 'Candidatus Scalindua' and putatively new operational taxonomic units closely affiliated to sequences retrieved in marine environments that have documented anammox activity. 'Scalindua brodae' like sequences constituted up to 84.4 % of the sequences retrieved from Bannock. The anammox community in L'Atalante was different than in Bannock and was stratified according to salinity increase. This study putatively extends anammox bacterial habitats to extremely saline sulphidic ecosystems.


Assuntos
Amônia/metabolismo , Bactérias Anaeróbias/isolamento & purificação , Água do Mar/microbiologia , Anaerobiose , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Genes Bacterianos , Genes de RNAr , Hidrazinas/metabolismo , Mar Mediterrâneo , Isótopos de Nitrogênio , Oxirredução , Filogenia , Salinidade , Análise de Sequência de DNA
12.
Environ Toxicol Chem ; 42(1): 46-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342340

RESUMO

Environmental release of 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) is of great concern due to high migration potential in the environment. In the present study we evaluated the adsorption and microbially-mediated removal kinetics of dissolved DNAN and NTO in contrasting freshwater sediments with different total organic carbon (TOC) content. River sand (low TOC), pond silt (high TOC), clay-rich lake sediment (low TOC), wetland silt (high TOC), carbonate sand (low TOC), and iron-rich clay (low TOC) were evaluated. Separate abiotic and biotic bench-top sediment slurry incubations were carried out at 23, 15, and 4 °C for DNAN and NTO. Experiments were conducted over 3 weeks. Time series aqueous samples and sediment samples collected at the end of the experiment were analyzed for DNAN and NTO concentrations. The DNAN compound equilibrated with sediment within the first 2 h after addition whereas NTO showed no adsorption. 2,4-Dinitroanisole adsorbed more onto fine-grained organic-rich sediments (Kd = 2-40 L kg-1 sed-1 ) than coarse-grained organic-poor sediments (Kd = 0.2-0.6 L kg-1 sed-1 ), and the TOC content and cation exchange capacity of sediment were reliable predictors for abiotic DNAN adsorption. Adsorption rate constants and equilibrium partitioning constants for DNAN were inversely proportional to temperature in all sediment types. The biotic removal half-life of DNAN was faster (t1/2 = 0.1-58 h) than that of NTO (t1/2 = 5-347 h) in all sediment slurries. Biotic removal rates (t1/2 = 0.1-58 h) were higher than abiotic rates (t1/2 = 0.3-107 h) for DNAN at 23 °C. Smaller grain size coupled with higher TOC content enhanced biotic NTO and DNAN removal in freshwater environments. Environ Toxicol Chem 2023;42:46-59. © 2022 SETAC.


Assuntos
Água Doce , Areia , Argila , Anisóis/análise
13.
ISME Commun ; 2(1): 103, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37938758

RESUMO

The mixoplankton green Noctiluca scintillans (gNoctiluca) is known to form extensive green tides in tropical coastal ecosystems prone to eutrophication. In the Arabian Sea, their recent appearance and annual recurrence have upended an ecosystem that was once exclusively dominated by diatoms. Despite evidence of strong links to eutrophication, hypoxia and warming, the mechanisms underlying outbreaks of this mixoplanktonic dinoflagellate remain uncertain. Here we have used eco-physiological measurements and transcriptomic profiling to ascribe gNoctiluca's explosive growth during bloom formation to the form of sexual reproduction that produces numerous gametes. Rapid growth of gNoctiluca coincided with active ammonium and phosphate release from gNoctiluca cells, which exhibited high transcriptional activity of phagocytosis and metabolism generating ammonium. This grazing-driven nutrient flow ostensibly promotes the growth of phytoplankton as prey and offers positive support successively for bloom formation and maintenance. We also provide the first evidence that the host gNoctiluca cell could be manipulating growth of its endosymbiont population in order to exploit their photosynthetic products and meet critical energy needs. These findings illuminate gNoctiluca's little known nutritional and reproductive strategies that facilitate its ability to form intense and expansive gNoctiluca blooms to the detriment of regional water, food and the socio-economic security in several tropical countries.

14.
Sci Total Environ ; 745: 140800, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32721618

RESUMO

Hundreds of explosive-contaminated marine sites exist globally, many of which contain the common munitions constituent hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Quantitative information about RDX transformation in coastal ecosystems is essential for management of many of these sites. Isotopically labelled RDX containing 15N in all 3 nitro groups was used to track the fate of RDX in three coastal ecosystem types. Flow-through mesocosms representing subtidal vegetated (silt/eel grass), subtidal non-vegetated (sand) and intertidal marsh ecosystems were continuously loaded with isotopically labelled RDX for 16-17 days. Sediment, pore-water and overlying surface water were analyzed to determine the distribution of RDX, nitroso-triazine transformation products (NXs) and nitrogen containing complete mineralization products, including ammonium, nitrate+nitrite, nitrous oxide and nitrogen gas. The marsh, silt, and sand ecotypes transformed 94%, 90% and 76% of supplied RDX, respectively. Total dissolved NXs accounted for 2%-4% of the transformed 15N-RDX. The majority of RDX transformation in the water column was by mineralization to inorganic N (dissolved and evaded; 64%-78% of transformed 15N-RDX). RDX was mineralized primarily to N2O (62-74% of transformed 15N-RDX) and secondarily to N2 (1-2% of transformed 15N-RDX) which exchanged with the atmosphere. Transformation of RDX was favored in carbon-rich lower redox potential sediments of the silt and marsh mesocosms where anaerobic processes of iron and sulfate reduction were most prevalent. RDX was most persistent in the carbon-poor sand mesocosm. Partitioning of 15N derived from RDX onto sediment and suspended particulates was negligible in the overall mass balance of RDX transformation (2%-3% of transformed 15N-RDX). The fraction of 15N derived from RDX that was sorbed or assimilated in sediment was largest in the marsh mesocosm (most organic carbon), and smallest in the sand mesocosm (largest grain size and least organic carbon). Sediment redox conditions and available organic carbon stores affect the fate of RDX in different coastal marine habitats.

15.
Environ Microbiol ; 11(5): 1194-207, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19161435

RESUMO

Anaerobic ammonium oxidation (anammox) specific PCR method was developed to examine diversity and distribution of anammox bacteria in sediments collected from three different sites at Cape Fear River Estuary, North Carolina, where environmental parameters vary greatly over the year. Abundance and activities of anammox bacteria in these sediments were measured using the quantitative PCR (Q-PCR) method and (15)N isotope tracer incubations. Different anammox bacterial communities composed with Brocadia, Kuenenia, Jettenia or Scalindua were found among sites along the estuarine gradient. Seasonal variations of anammox community structures were observed along the estuary based on terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Correlation analysis suggested that salinity variation influenced the diversity and distribution of different anammox bacteria in the estuary. Q-PCR assays of anammox bacteria showed temporal and spatial variations of their abundances, which were highly correlated to salinity variation. (15)N isotope tracer incubations measured different anammox rates and its per cent contribution to total N(2) production among sites. The highest anammox rate was found at the site where Scalindua organisms dominated with the highest anammox bacterial abundance. Thus, we demonstrated a biogeographical distribution of diverse anammox bacteria influenced by salinity, and provide evidence to link anammox abundance and activities in estuarine sediments.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Compostos de Amônio Quaternário/metabolismo , Anaerobiose , Bactérias/metabolismo , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Geografia , Dados de Sequência Molecular , Isótopos de Nitrogênio/metabolismo , North Carolina , Oxirredução , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Rios , Estações do Ano , Análise de Sequência de DNA
16.
Sci Total Environ ; 647: 369-378, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086489

RESUMO

Coastal marine habitats become contaminated with the munitions constituent, Hexahydro-1,3,5-trinitro-1,3,5-trazine (RDX), via military training, weapon testing and leakage of unexploded ordnance. This study used 15N labeled RDX in simulated aquarium-scale coastal marine habitat containing seawater, sediment, and biota to track removal pathways from surface water including sorption onto particulates, degradation to nitroso-triazines and mineralization to dissolved inorganic nitrogen (DIN). The two aquaria received continuous RDX inputs to maintain a steady state concentration (0.4 mg L-1) over 21 days. Time series RDX and nitroso-triazine concentrations in dissolved (surface and porewater) and sorbed phases (sediment and suspended particulates) were analyzed. Distributions of DIN species (ammonium, nitrate + nitrite and dissolved N2) in sediments and overlying water were also measured along with geochemical variables in the aquaria. Partitioning of RDX and RDX-derived breakdown products onto surface sediment represented 13% of the total added 15N as RDX (15N-[RDX]) equivalents after 21 days. Measured nitroso-triazines in the aquaria accounted for 6-13% of total added 15N-[RDX]. 15N-labeled DIN was found both in the oxic surface water and hypoxic porewaters, showing that RDX mineralization accounted for 34% of the 15N-[RDX] added to the aquaria over 21 days. Labeled ammonium (15NH4+, found in sediment and overlying water) and nitrate + nitrite (15NOX, found in overlying water only) together represented 10% of the total added 15N-[RDX]. The production of 15N labeled N2 (15N2), accounted for the largest individual sink during the transformation of the total added 15N-[RDX] (25%). Hypoxic sediment was the most favorable zone for production of N2, most of which diffused through porous sediments into the water column and escaped to the atmosphere.

17.
Environ Toxicol Chem ; 37(7): 1990-1997, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603346

RESUMO

Over the last century, unexploded ordnances have been disposed of in marine shelf systems because of a lack of cost-effective alternatives. Underwater unexploded ordnances have the potential to leak 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-triazine (RDX), commonly used chemical munitions, and contaminate local waters, biota, and sediments. The rate at which this contamination occurs in the environment is relatively unknown, and the cost- and time-prohibitive nature of sampling across sites makes mapping difficult. In the present study we assessed the efficacy of ethylene-vinyl acetate (EVA) for sampling relatively soluble munitions compounds over a range of environmental conditions (i.e., changes in temperature and salinity) and optimized the composition of the passive sampling polymer. The EVA sampler was able to successfully detect ambient concentrations of lingering munitions compounds from field sites containing unexploded ordnances. The sampler affinity for the munitions in terms of an EVA-water partition coefficient was greater than the standard octanol water values for each target compound. Partitioning of compounds onto EVA over the natural ranges of salinity did not change significantly, although uptake varied consistently and predictably with temperature. Increasing the vinyl acetate to ethylene ratio of the polymer corresponded to an increase in uptake capacity, consistent with enhanced dipole-dipole interactions between the munitions and the polymer. This sampler provides a cost-effective means to map and track leakage of unexploded ordnances both spatially and temporally. Environ Toxicol Chem 2018;37:1990-1997. © 2018 SETAC.


Assuntos
Monitoramento Ambiental/instrumentação , Substâncias Explosivas/análise , Água Doce/química , Água do Mar/química , Acetatos/análise , Entropia , Cinética , Salinidade , Temperatura , Termodinâmica , Triazinas/análise , Trinitrotolueno/análise , Poluentes Químicos da Água/análise
18.
19.
Environ Toxicol Chem ; 36(5): 1170-1180, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27791286

RESUMO

The lack of knowledge on the fate of explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), particularly in marine ecosystems, constrains the application of bioremediation techniques in explosive-contaminated coastal sites. The authors present a comparative study on anaerobic biodegradation and mineralization of 15 N-nitro group isotopically labeled TNT and RDX in organic carbon-rich, fine-grained marine sediment with native microbial assemblages. Separate sediment slurry experiments were carried out for TNT and RDX at 23°C for 16 d. Dissolved and sediment-sorbed fractions of parent and transformation products, isotopic compositions of sediment, and mineralization products of the dissolved inorganic N pool (15 NH4+ ,15 NO3- ,15 NO2- , and 15 N2 ) were measured. The rate of TNT removal from the aqueous phase was faster (0.75 h-1 ) than that of RDX (0.37 h-1 ), and 15 N accumulation in sediment was higher in the TNT (13%) than the RDX (2%) microcosms. Mono-amino-dinitrotoluenes were identified as intermediate biodegradation products of TNT. Two percent of the total spiked TNT-N is mineralized to dissolved inorganic N through 2 different pathways: denitration as well as deamination and formation of NH4+ , facilitated by iron and sulfate reducing bacteria in the sediments. The majority of the spiked TNT-N (85%) is in unidentified pools by day 16. Hexahydro-1,3,5-trinitro-1,3,5-triazine (10%) biodegrades to nitroso derivatives, whereas 13% of RDX-N in nitro groups is mineralized to dissolved inorganic N anaerobically by the end of the experiment. The primary identified mineralization end product of RDX (40%) is NH4+ , generated through either deamination or mono-denitration, followed by ring breakdown. A reasonable production of N2 gas (13%) was seen in the RDX system but not in the TNT system. Sixty-eight percent of the total spiked RDX-N is in an unidentified pool by day 16 and may include unquantified mineralization products dissolved in water. Environ Toxicol Chem 2017;36:1170-1180. © 2016 SETAC.


Assuntos
Substâncias Explosivas/metabolismo , Sedimentos Geológicos/química , Triazinas/metabolismo , Trinitrotolueno/metabolismo , Biodegradação Ambiental , Substâncias Explosivas/química , Marcação por Isótopo , Isótopos de Nitrogênio/química , Análise de Componente Principal , Triazinas/química , Trinitrotolueno/química , Água/química
20.
Environ Toxicol Chem ; 35(1): 47-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26178383

RESUMO

Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures.


Assuntos
Substâncias Explosivas/química , Sedimentos Geológicos/análise , Triazinas/química , Trinitrotolueno/química , Adsorção , Algoritmos , Anaerobiose , Carbono/análise , Substâncias Explosivas/análise , Água Doce/química , Concentração de Íons de Hidrogênio , Cinética , Tamanho da Partícula , Temperatura , Triazinas/análise , Trinitrotolueno/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA