Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338976

RESUMO

This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.


Assuntos
NAD , Fotoquimioterapia , Animais , Camundongos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/metabolismo , Oxigênio/metabolismo , Modelos Animais de Doenças , Fotoquimioterapia/métodos
2.
Anal Chem ; 95(7): 3729-3735, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36759196

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is becoming common worldwide. In pathophysiological studies of NAFLD, an in vivo optical probe that enables visualization of lipid droplets (LDs) and imaging of oxygen status in hepatic tissues simultaneously would be very useful. Here, we present the phosphorescent Ir(III) complex BTP ((btp)2Ir(acac) (btp = benzothienylpyridine, acac = acetylacetone)) as the first probe that meets this requirement. BTP was efficiently taken up into cultured 3T3-L1 adipocytes and selectively accumulated into LDs. Quantifying oxygen levels in LDs based on the phosphorescence lifetime of BTP allowed us to track changes in cellular oxygen tension after treatment with metabolic stimulants. Phosphorescence lifetime imaging microscopy combined with intravenously administered BTP in mice enabled specific visualization of LDs in hepatic lobules and simultaneous imaging of the oxygen gradient that decreased from the portal vein (PV) to the central vein (CV). NAFL model mice were created by feeding a high-fat diet (HFD) to mice for 3 or 7 days. The mice fed an HFD showed a marked increase in the amount and size of LDs in hepatocytes compared with those fed a normal diet, leading to abnormal microvascular structures. In addition, HFD-fed mice also exhibited reduced oxygen tension in areas other than the CV. Multicolor imaging with the LD-accumulated oxygen probe BTP and vasculature-staining FITC-lectin suggested that structural distortions of the sinusoidal microvasculature caused by enlarged LDs were associated with partial hypoxia in NAFL.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gotículas Lipídicas/metabolismo , Oxigênio/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Hepatócitos/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
3.
EMBO Rep ; 22(12): e53035, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34661337

RESUMO

Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two-photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia-inducible factor activity. We observe that hypoxia decreases ten-eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen-dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.


Assuntos
Desmetilação do DNA , Osteoclastos , Animais , Diferenciação Celular/genética , Hipóxia Celular , Hipóxia/metabolismo , Camundongos , Osteoclastos/metabolismo , Oxigênio/metabolismo
4.
Anal Chem ; 94(6): 2794-2802, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35109653

RESUMO

Phosphorescence lifetime imaging microscopy (PLIM) using a phosphorescent oxygen probe is an innovative technique for elucidating the behavior of oxygen in living tissues. In this study, we designed and synthesized an Ir(III) complex, PPYDM-BBMD, that exhibits long-lived phosphorescence in the near-infrared region and enables in vivo oxygen imaging in deeper tissues. PPYDM-BBMD has a π-extended ligand based on a meso-mesityl dipyrromethene structure and phenylpyridine ligands with cationic dimethylamino groups to promote intracellular uptake. This complex gave a phosphorescence spectrum with a maximum at 773 nm in the wavelength range of the so-called biological window and exhibited an exceptionally long lifetime (18.5 µs in degassed acetonitrile), allowing for excellent oxygen sensitivity even in the near-infrared window. PPYDM-BBMD showed a high intracellular uptake in cultured cells and mainly accumulated in the endoplasmic reticulum. We evaluated the oxygen sensitivity of PPYDM-BBMD phosphorescence in alpha mouse liver 12 (AML12) cells based on the Stern-Volmer analysis, which gave an O2-induced quenching rate constant of 1.42 × 103 mmHg-1 s-1. PPYDM-BBMD was administered in the tail veins of anesthetized mice, and confocal one-photon PLIM images of hepatic tissues were measured at different depths from the liver surfaces. The PLIM images visualized the oxygen gradients in hepatic lobules up to a depth of about 100 µm from the liver surfaces with a cellular-level resolution, allowing for the quantification of oxygen partial pressure based on calibration results using AML12 cells.


Assuntos
Irídio , Oxigênio , Irídio/química , Ligantes , Oxigênio/análise , Porfobilinogênio/análogos & derivados
5.
Molecules ; 26(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834120

RESUMO

In our previous paper, we reported that amphiphilic Ir complex-peptide hybrids (IPHs) containing basic peptides such as KK(K)GG (K: lysine, G: glycine) (e.g., ASb-2) exhibited potent anticancer activity against Jurkat cells, with the dead cells showing a strong green emission. Our initial mechanistic studies of this cell death suggest that IPHs would bind to the calcium (Ca2+)-calmodulin (CaM) complex and induce an overload of intracellular Ca2+, resulting in the induction of non-apoptotic programmed cell death. In this work, we conduct a detailed mechanistic study of cell death induced by ASb-2, a typical example of IPHs, and describe how ASb-2 induces paraptotic programmed cell death in a manner similar to that of celastrol, a naturally occurring triterpenoid that is known to function as a paraptosis inducer in cancer cells. It is suggested that ASb-2 (50 µM) induces ER stress and decreases the mitochondrial membrane potential (ΔΨm), thus triggering intracellular signaling pathways and resulting in cytoplasmic vacuolization in Jurkat cells (which is a typical phenomenon of paraptosis), while the change in ΔΨm values is negligibly induced by celastrol and curcumin. Other experimental data imply that both ASb-2 and celastrol induce paraptotic cell death in Jurkat cells, but this induction occurs via different signaling pathways.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Irídio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Calmodulina/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Curcumina/farmacologia , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Células Jurkat , Células K562 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Triterpenos Pentacíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Células U937
6.
J Am Chem Soc ; 142(21): 9625-9633, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32343567

RESUMO

Single-molecule localization microscopy (SMLM) allows the reconstruction of super-resolution images but generally requires prior intense laser irradiation and in some cases additives to induce blinking of conventional fluorophores. We previously introduced a spontaneously blinking rhodamine fluorophore based on an intramolecular spirocyclization reaction for live-cell SMLM under physiological conditions. Here, we report a novel principle of spontaneous blinking in living cells, which utilizes reversible ground-state nucleophilic attack of intracellular glutathione (GSH) upon a xanthene fluorophore. Structural optimization afforded two pyronine fluorophores with different colors, both of which exhibit equilibrium (between the fluorescent dissociated form and the nonfluorescent GSH adduct form) and blinking kinetics that enable SMLM of microtubules or mitochondria in living cells. Furthermore, by using spontaneously blinking fluorophores working in the near-infrared (NIR) and green ranges, we succeeded in dual-color live-cell SMLM without the need for optimization of the imaging medium.


Assuntos
Corantes Fluorescentes/química , Glutationa/química , Imagem Óptica , Xantenos/química , Animais , Células Cultivadas , Chlorocebus aethiops , Estrutura Molecular , Células Vero
7.
Anal Chem ; 92(1): 607-611, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769292

RESUMO

In this work, we evaluated the effect of solvent absorption during photoluminescence quantum yield (PLQY) measurements of near-infrared (NIR) emission with an integrating sphere (IS) instrument, and propose an effective correction method. Transmittance spectra of representative solvents measured with an IS instrument showed significant absorption bands in the first NIR region (NIR-I; 700-950 nm), and more prominently in the second NIR (NIR-II; 1000-1700 nm) region due to overtones and a combination of fundamental vibrations involving C-H and O-H stretching modes. The emission spectra of typical NIR-I and NIR-II emitting compounds exhibited dips owing to solvent absorption, resulting in somewhat reduced PLQY values. We utilized the transmittance spectrum of the solvent to correct the observed emission spectrum. Distortion due to solvent absorption was properly corrected, and additional corrections for the reabsorption/reemission effect gave more reliable PLQY values.

8.
Anal Chem ; 92(7): 4996-5003, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126762

RESUMO

Lipid droplets (LDs) are closely related to lipid metabolism in living cells and are highly associated with diverse diseases such as fatty liver, diabetes, and cancer. Herein we describe a π-extended fluorescent coumarin (PC6S) for visualizing LDs in living cells and in the tissues of living mice using confocal fluorescence lifetime imaging microscopy (FLIM). PC6S showed a large positive solvatochromic shift and high fluorescence quantum yield (>0.80) in both nonpolar and polar solvents. Additionally, the fluorescence lifetimes of PC6S were largely dependent on solvent polarity. The excellent spectral and photophysical properties of PC6S allowed its selective staining of LDs in living and fixed cells, and multicolor imaging. Fluorescence lifetime measurements of PC6S allowed estimation of the apparent polarity of LDs. The high photostability and long intracellular retention of PC6S supported in situ visualization of the formation processes of LDs resulting from the accumulation of fatty acid. Furthermore, intravenous administration of PC6S and use of the FLIM system allowed the imaging of LDs in hepatocytes in living normal mice and the growth of LDs resulting from the excess accumulation of lipids in high-fat-diet-fed mice (fatty liver model mice). Taking advantage of the high selectivity and sensitivity of PC6S for LDs in liver, we could visualize the adipocytes of lipid-rich tissues and LDs in kidney peritubular cells by PC6S fluorescence. These results demonstrated that PC6S combined with a FLIM system can be useful for monitoring and tracking the formation of LDs in both cultured cells and specific tissues and organs.


Assuntos
Cumarínicos/química , Fígado Gorduroso/diagnóstico por imagem , Fluorescência , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Imagem Óptica , Células 3T3-L1 , Animais , Células Cultivadas , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Estrutura Molecular
9.
Org Biomol Chem ; 18(22): 4198-4209, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32191251

RESUMO

Push-pull fluorenones (FOs) were synthesized by treating a benzopentalenequinone (BPO) derivative with alkynes that bear an electron-rich aniline moiety via a regioselective [4 + 2] cycloaddition (CA) followed by a [4 + 1] retrocycloaddition (RCA). The resulting FOs were readily converted into dibenzodicyanofulvenes (DBDCFs) by treatment with malononitrile in the presence of TiCl4 and pyridine. The FOs and DBDCFs exhibit intramolecular charge-transfer (ICT) that manifests in absorptions at 350-650 nm and amphoteric electrochemical behavior. Furthermore, FOs and DBDCFs that contain a C[triple bond, length as m-dash]C bond react with tetracyanoethylene in a formal [2 + 2] CA followed by a retro-electrocyclization to afford sterically congested tetracyanobutadiene (TCBD) conjugates. The substituent (H or Me) on the aromatic ring adjacent to the butadiene moiety thereby determines whether the butadiene adopts an s-cis or s-trans conformation, and thus controls the physicochemical properties of the resulting TCBDs. The TCBD conjugates exhibit ICT absorptions (≤800 nm) together with up to four reversible reduction steps.

10.
Kidney Int ; 93(6): 1483-1489, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29606399

RESUMO

Renal tubulointerstitial hypoxia is recognized as a final common pathway of chronic kidney disease and is considered a promising drug target. However, hypoxia in the tubules is not well examined because of limited detection methods. Here, we devised a method to visualize renal tubular oxygen tension with spatial resolution at a cellular level using the cell-penetrating phosphorescent probe, BTPDM1 (an iridium-based cationic lipophilic dye), and confocal phosphorescence lifetime imaging microscopy to precisely assess renal hypoxia. Imaging with BTPDM1 revealed an oxygen gradient between S1 and S2 segments in mouse kidney. We also demonstrated that our microscopy system can detect subtle changes of hypoxemia and reoxygenation, and the acquired phosphorescence lifetime can be converted to partial pressure of oxygen. This new method allows, for the first time, visualization of intravital oxygen gradients at the renal surface with high spatial resolution. Thus, the confocal phosphorescence lifetime imaging microscopy platform, combined with BTPDM1, will promote an accurate understanding of tissue hypoxia, including renal hypoxia.


Assuntos
Microscopia Intravital/métodos , Túbulos Renais/metabolismo , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Oxigênio/metabolismo , Animais , Hipóxia Celular , Linhagem Celular , Microambiente Celular , Corantes Fluorescentes/administração & dosagem , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pressão Parcial , Fatores de Tempo
11.
Opt Lett ; 42(4): 731-734, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198851

RESUMO

The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optic probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of a nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on an iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions and in living mice.


Assuntos
NADP/metabolismo , Fibras Ópticas , Oxigênio/metabolismo , Espectrometria de Fluorescência/instrumentação , Animais , Linhagem Celular Tumoral , Humanos , Irídio/química , Camundongos , Compostos Organometálicos/química , Piridinas/química
12.
Anal Chem ; 88(14): 7137-44, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27347743

RESUMO

We have developed a novel RNA detection method, termed signal amplification by ternary initiation complexes (SATIC), in which an analyte sample is simply mixed with the relevant reagents and allowed to stand for a short time under isothermal conditions (37 °C). The advantage of the technique is that there is no requirement for (i) heat annealing, (ii) thermal cycling during the reaction, (iii) a reverse transcription step, or (iv) enzymatic or mechanical fragmentation of the target RNA. SATIC involves the formation of a ternary initiation complex between the target RNA, a circular DNA template, and a DNA primer, followed by rolling circle amplification (RCA) to generate multiple copies of G-quadruplex (G4) on a long DNA strand like beads on a string. The G4s can be specifically fluorescence-stained with N(3)-hydroxyethyl thioflavin T (ThT-HE), which emits weakly with single- and double-stranded RNA/DNA but strongly with parallel G4s. An improved dual SATIC system, which involves the formation of two different ternary initiation complexes in the RCA process, exhibited a wide quantitative detection range of 1-5000 pM. Furthermore, this enabled visual observation-based RNA detection, which is more rapid and convenient than conventional isothermal methods, such as reverse transcription-loop-mediated isothermal amplification, signal mediated amplification of RNA technology, and RNA-primed rolling circle amplification. Thus, SATIC methodology may serve as an on-site and real-time measurement technique for transcriptomic biomarkers for various diseases.


Assuntos
Biomarcadores/análise , DNA Circular/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA/genética , Quadruplex G , Limite de Detecção
13.
Anal Chem ; 87(4): 2360-6, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25654558

RESUMO

In this paper, we present an integrating sphere instrument for absolute luminescence quantum yield measurements from the visible to near-infrared (NIR) spectral region (λ = 350-1650 nm). The integrating sphere is equipped with a Xe light source and two spectrally corrected multichannel analyzers using a back-thinned charge-coupled device (CCD) and InGaAs detector, one for measurements in the visible to NIR wavelength region (λ = 350-1100 nm) and the other for the NIR wavelength region (λ = 900-1650 nm). The combination of the two optical multichannel analyzers allows measurement of the absolute quantum yield of NIR emissions with good sensitivity. Using this new instrument and platinum(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) as a sensitizer, we performed the first absolute measurements of quantum yield (Φ(p)(¹Δ)) of the a¹Δ(g) (v' = 0) → X³Σ(g)⁻ (v″ = 0) emission at 1270 nm from molecular oxygen in different solvents. The quantum yields Φ(p)(¹Δ) in CCl4 and CS2 under infinite dilution of sensitizer were determined to be 2.2 × 10⁻² and 6.4 × 10⁻², respectively. Using the Φ(p)(¹Δ) value in CCl4, the quantum yields in other solvents were determined based on the relative method. From the phosphorescence quantum yields and the lifetimes of O2(a¹Δ(g)) taken under identical experimental conditions, we evaluated the radiative and nonradiative rate constants of O2(a¹Δ(g)), which are key parameters to understand the photophysical properties of singlet oxygen in solution. The quantum yields and radiative and nonradiative rate constants obtained in the present study were compared with the literature values determined based on the relative method.

14.
Anal Chem ; 87(5): 2710-7, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25634116

RESUMO

Small luminescent molecular probes based on the iridium(III) complex BTP, (btp)2Ir(acac) (btp = benzothienylpyridine, acac = acetylacetone) have been developed for sensing intracellular and in vivo O2. These compounds are BTPSA (containing an anionic carboxyl group), BTPNH2 (containing a cationic amino group), and BTPDM1 (containing a cationic dimethylamino group); all substituents are incorporated into the ancillary acetylacetonato ligand of BTP. Introduction of the cationic dimethylamino group resulted in an almost 20-fold increase in cellular uptake efficiency of BTPDM1 by HeLa cells compared with BTP. The phosphorescence intensity of BTPDM1 internalized in living cells provided a visual representation of the O2 gradient produced by placing a coverslip over cultured monolayer cells. The intracellular O2 levels (pO2) inside and outside the edge of the coverslip could be evaluated by measuring the phosphorescence lifetime of BTPDM1. Furthermore, intravenous administration of 25 nmol BTPDM1 to tumor-bearing mice allowed the tumor region to be visualized by BTPDM1 phosphorescence. The lifetime of BTPDM1 phosphorescence from tumor regions was much longer than that from extratumor regions, thereby demonstrating tumor hypoxia (pO2 = 6.1 mmHg for tumor and 50 mmHg for extratumor epidermal tissue). Tissue distribution studies showed that 2 h after injection of BTPDM1 into a mouse, the highest distribution was in liver and kidney, while after 24 h, BTPDM1 was excreted in the feces. These results demonstrate that BTPDM1 can be used as a small molecular probe for measuring intracellular O2 levels in both cultured cells and specific tissues and organs.


Assuntos
Técnicas Biossensoriais/métodos , Irídio/química , Substâncias Luminescentes/química , Neoplasias Experimentais/diagnóstico , Compostos Organometálicos/química , Oxigênio/química , Animais , Feminino , Células HeLa , Humanos , Medições Luminescentes , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo
15.
Chemistry ; 21(7): 3115-28, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25533174

RESUMO

π-Extended thiadiazoles 4-8 fused with various electron-donating heteroaromatic moieties have been designed and synthesized. Just like thiadiazoles 1-3 synthesized previously, 4-8 exhibit intramolecular charge-transfer (CT) interactions, moderate-to-good fluorescence quantum yields of up to 0.78, and electrochemical amphoterism. In comparison with 1-3, the benzannulation in thiadiazoles 4-7 moderately extends the π conjugation and significantly increases the stability of the cationic species formed upon electrochemical oxidation. The fluorescence quantum yields increase remarkably from 3 to 6 and 7 due to the efficient suppression of nonradiative intersystem crossing resulting from the benzannulation. The properties of 4-8 strongly reflect the different species annulated to the pyrrole rings, namely benzothiophene, naphthalene, and benzofuran. Eleven crystals, including poly- and pseudopolymorphic crystals of 1 (1-Crys.(Y) and 1-Crys.(G)), 2 (2-Crys.(O) and 2-Crys.(G)), 4 (4-Crys.(O) and 4-Crys.(G)), and 6 (6-Crys.(O) and 6-Crys.(G)), were obtained and characterized by X-ray crystallography. The fluorescence colors and efficiencies are distinct for each poly- and pseudopolymorph of 1, 2, 4, and 6. It has been suggested that both the extent of the electronic interactions in the π-stacked dimers and the presence of excitonic interactions originating in the 1D face-to-face slipped columns affect the fluorescence wavelengths of the poly- and pseudopolymorphs.

16.
Org Biomol Chem ; 13(6): 1818-28, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25502800

RESUMO

In this study, we report a preparation and an aggregate emission behavior of an amphiphilic donor-acceptor dye, which is composed of a triphenylamine-benzothiadiazole donor-acceptor chromophore and two water-soluble hexa(ethylene glycol) chains. The dye is strongly fluorescent in nonpolar solutions such as cyclohexane and toluene, whereas the emission intensity is reduced in aprotic polar solutions such as DMF and acetonitrile. This fluorescence reduction correlates with the increase in polarity, by which the transition from a local excited state to a highly polarized excited state is facilitated, leading to an increased nonradiative deactivation rate. Furthermore, significant fluorescence quenching is observed in protic polar solutions such as ethanol and methanol. Hydrogen-bonding interactions between the dye and the protic solvent molecules further accelerate the deactivation rate. In contrast, in a water solution, red light emission is achieved distinctly at 622 nm with a relatively large fluorescence quantum yield of 0.20. This red emission is related to the aggregation of the dye molecules grown in water. The kinetic analysis from the fluorescence rate constant and nonradiative rate constant indicates that the nonradiative deactivation channel is restricted in water. The formed aggregate, which was indicated by transmittance electron microscopy as a spherical aggregate morphology with a diameter of 3-4 nm, provides a less polar hydrophobic space inside the aggregate structure, by which hydrogen-bonding and the subsequent quenching are restricted, leading to the reduction of the nonradiative deactivation rate.


Assuntos
Compostos de Anilina/química , Corantes/química , Luz , Tensoativos/química , Tiadiazóis/química , Água/química , Corantes/síntese química , Estrutura Molecular , Tensoativos/síntese química
17.
Sensors (Basel) ; 15(6): 13503-21, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26066988

RESUMO

Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (R(I) = (I(p)/I(f))) between the phosphorescence (I(p)) and fluorescence (I(f)) intensities showed excellent oxygen responses; the ratio of R(I) under degassed and aerated conditions ( R(I)(0) was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the R(I)) value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Irídio/química , Sondas Moleculares/química , Oxigênio/análise , Células HeLa , Humanos , Células MCF-7 , Microscopia de Fluorescência , Sondas Moleculares/farmacocinética , Oxigênio/química , Oxigênio/metabolismo
18.
Anal Chem ; 86(24): 12078-84, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25417850

RESUMO

We newly synthesized thioflavin T (ThT) analogs for which the methyl group at the N3 position on the benzothiazole ring was replaced with either a ((p-(dimethylamino)benzoyl)oxy)ethyl group (ThT-DB) or a hydroxyethyl group (ThT-HE). In several neutral buffers, ThT-HE bound to a parallel guanine-quadruplex (G4) DNA and selectively emitted strong fluorescence at 74- to 240-fold higher intensities than those in the presence of double-stranded DNA (dsDNA), whereas ThT resulted in only 13- to 25-fold higher intensities. Furthermore, circular dichroism (CD) analyses using ThT, ThT-DB, and ThT-HE showed that these compounds could induce topological changes in G4. In addition, the different chemical structures of the N3 substituents could alter a G4-DNA conformation. These results indicate a great potential for N3-substituted ThT analogs as G4 probes and drug leads to achieve gene expression regulation.


Assuntos
Quadruplex G , Conformação de Ácido Nucleico , Tiazóis/química , Benzotiazóis , DNA/química , Espectrometria de Fluorescência
19.
J Org Chem ; 79(2): 618-29, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24364802

RESUMO

A series of alternating carbazole-thiophene oligomers, namely 2,7-linked carbazole-thiophene oligomers 1, 3, 5, 7, and 9 and 3,6-linked ones 2, 4, 6, 8, and 10, in which the molecular length was systematically elongated, were synthesized by Suzuki-Miyaura coupling reactions. The effects of the conjugation connectivity between the carbazole and thiophene moieties and the molecular length on the electronic, photophysical, and electrochemical properties of 1-10 were comprehensively investigated. In the present oligomer architectures, the connection with thiophene at the 2,7-positions of carbazole ensures π-conjugation to a high extent and high fluorescence quantum yields, while that at the 3,6-positions enhances the donor ability. The increase in the molecular length of the 2,7-linked oligomers effectively extends π-conjugation. The relationship between structural variations and photophysical properties was examined by fluorescence lifetime measurements in detail. The X-ray crystal structure of 6 was also disclosed.

20.
Chemistry ; 19(36): 12138-51, 2013 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-23873731

RESUMO

Novel tetraalkoxyphenanthrene-fused dehydro[12]-, [18]-, and [24]annulenes 1-3 were synthesized by using Cu-mediated or Pd-catalyzed oxidative macrocyclization reactions as key steps, and their electronic, optical, and electrochemical properties have been investigated in detail. X-ray crystallographic analysis of a single crystal of 1 a demonstrated that the molecules were arranged longitudinally in a slipped π-stacked fashion to form a 1D column. (1)H NMR and UV/Vis spectroscopic and cyclic voltammetric analysis in conjugation with nucleus-independent chemical shift (NICS) calculations for 1-3 support that the annulation at the 9,10-positions of phenanthrene to the dehydroannulene ring enhances the tropicity and decreases the HOMO-LUMO gaps of the molecules relative to the benzannulation and that 1 possesses an antiaromatic character. Self-association behavior due to π-π stacking in CDCl3 was observed for 1 and 2 and was quantified by concentration-dependent (1)H NMR spectroscopic measurements. The self-assembly of 1 and 2 into well-defined 1D superstructures with high aspect ratios were obtained, and the morphology and crystallinity of these compounds were investigated by means of SEM and wide-angle X-ray diffraction (WAXD) measurements. Furthermore, it was shown that 1 b and 2 b display liquid-crystalline phases by means of differential scanning calorimetry, polarizing optical microscopy, and variable-temperature WAXD measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA