Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(5): 1962-1967, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33596382

RESUMO

It was recently found that extremely large plasticity is exhibited in bulk compression of single-crystal ZnS in complete darkness. Such effects are believed to be caused by the interactions between dislocations and photoexcited electrons and/or holes. However, methods for evaluating dislocation behavior in such semiconductors with small dimensions under a particular light condition had not been well established. Here, we propose the "photoindentation" technique to solve this issue by combining nanoscale indentation tests with a fully controlled lighting system. The quantitative data analyses based on this photoindentation approach successfully demonstrate that the first pop-in stress indicating dislocation nucleation near the surface of ZnS clearly increases by light irradiation. Additionally, the room-temperature indentation creep tests show a drastic reduction of the dislocation mobility under light. Our approach demonstrates great potential in understanding the light effects on dislocation nucleation and mobility at the nanoscale, as most advanced technology-related semiconductors are limited in dimensions.

2.
Nano Lett ; 17(5): 2908-2912, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28406309

RESUMO

Dislocations, one-dimensional lattice defects, are known to strongly interact with impurity atoms in a crystal. This interaction is generally explained on the basis of the long-range strain field of the dislocation. In ionic crystals, the impurity-dislocation interactions must be influenced by the electrostatic effect in addition to the strain effect. However, such interactions have not been verified yet. Here, we show a direct evidence of the electrostatic impurity-dislocation interaction in α-Al2O3 by visualizing the dopant atom distributions at dislocation cores using atomic-resolution scanning transmission electron microscopy (STEM). It was found that the dopant segregation behaviors strongly depend on the kind of elements, and their valence states are considered to be a critical factor. The observed segregation behaviors cannot be explained by the elastic interactions only, but can be successfully understood if the electrostatic interactions are taken into account. The present findings will lead to the precise and quantitative understanding of impurity induced dislocation properties in many materials and devices.

3.
Nano Lett ; 16(5): 2907-15, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27088669

RESUMO

The electrode kinetics of Li-ion batteries, which are important for battery utilization in electric vehicles, are affected by the grain size, crystal orientation, and surface structure of electrode materials. However, the kinetic influences of the grain interior structure and element segregation are poorly understood, especially for Li-rich layered oxides with complex crystalline structures and unclear electrochemical phenomena. In this work, cross-sectional thin transmission electron microscopy specimens are "anatomized" from pristine Li1.2Mn0.567Ni0.167Co0.067O2 powders using a new argon ion slicer technique. Utilizing advanced microscopy techniques, the interior configuration of a single grain, multiple monocrystal-like domains, and nickel-segregated domain boundaries are clearly revealed; furthermore, a randomly distributed atomic-resolution Li2MnO3-like with an intergrown LiTMO2 (TM = transitional metals) "twin domain" is demonstrated to exist in each domain. Further theoretical calculations based on the Li2MnO3-like crystal domain boundary model reveal that Li(+) migration in the Li2MnO3-like structure with domain boundaries is sluggish, especially when the nickel is segregated in domain boundaries. Our work uncovers the complex configuration of the crystalline grain interior and provides a conceptual advance in our understanding of the electrochemical performance of several compounds for Li-ion batteries.

4.
Nano Lett ; 15(6): 4129-34, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26000901

RESUMO

Atomic-scale defects strongly influence the electrical and optical properties of materials, and their impact can be more pronounced in localized dimensions. Here, we directly demonstrate that strain triggers the formation of oxygen vacancies in complex oxides by examining the tilt boundary of SrTiO3 bicrystals. Through transmission electron microscopy and electron energy loss spectroscopy, we identify strains along the tilt boundary and oxygen vacancies in the strain-imposed regions between dislocation cores. First-principles calculations support that strains, irrespective of their type or sign, lower the formation energy of oxygen vacancies, thereby enhancing vacancy formation. Finally, current-voltage measurements confirm that such oxygen vacancies at the strained boundary result in a decrease of the nonlinearity of the I-V curve as well as the resistivity. Our results strongly indicate that oxygen vacancies are preferentially formed and are segregated at the regions where strains accumulate, such as heterogeneous interfaces and grain boundaries.

5.
J Am Chem Soc ; 136(1): 488-94, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24344633

RESUMO

At present, significant research efforts are being devoted both to identifying means of upgrading existing batteries, including lithium ion types, and also to developing alternate technologies, such as sodium ion, metal-air, and lithium-sulfur batteries. In addition, new battery systems incorporating novel electrode reactions are being identified. One such system utilizes the reaction of electrolyte ions with oxygen atoms reversibly extracted and reinserted topotactically from cathode materials. Batteries based on this system allow the use of various anode materials, such as lithium and sodium, without the requirement to develop new cathode intercalation materials. In the present study, this concept is employed and a new battery based on a CaFeO3 cathode with a sodium anode is demonstrated.

6.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416041

RESUMO

Atomic force microscopy (AFM) uses a scanning stylus to directly measure the surface characteristics of a sample. Since AFM relies on nanoscale interaction between the probe and the sample, the resolution of AFM-based measurement is critically dependent on the geometry of the scanning probe tip. This geometry, therefore, can limit the development of related applications. However, AFM itself cannot be effectively used to characterize AFM probe geometry, leading researchers to rely on indirect estimates based on force measurement results. Previous reports have described sample jigs that enable the observation of AFM probe tips using Transmission Electron Microscopy (TEM). However, such setups are too tall to allow sample tilting within more modern high-resolution TEM systems, which can only tilt samples less than a few millimeters in thickness. This makes it impossible to observe atomic-scale crystallographic lattice fringes by aligning the imaging angle perfectly or to view a flat probe tip profile exactly from the side. We have developed an apparatus that can hold an AFM tip for TEM observation while remaining thin enough for tilting, thereby enabling atomic-scale tip characterization. Using this technique, we demonstrated consistent observation of AFM tip crystal structures using tilting in TEM and found that the radii of curvature of nominally identical probes taken from a single box varied widely from 1.4 nm for the sharpest to 50 nm for the most blunt.

7.
Nat Commun ; 13(1): 1455, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304472

RESUMO

Grain boundaries (GBs) are considered as the effective sinks for point defects, which improve the radiation resistance of materials. However, the fundamental mechanisms of how the GBs absorb and annihilate point defects under irradiation are still not well understood at atomic scale. With the aid of the atomic resolution scanning transmission electron microscope, we experimentally investigate the atomistic mechanism of point defects absorption by a ∑31 GB in α-Al2O3 under high energy electron beam irradiation. It is shown that a disconnection pair is formed, during which all the Al atomic columns are tracked. We demonstrate that the formation of the disconnection pair is proceeded with disappearing of atomic columns in the GB core, which suggests that the GB absorbs vacancies. Such point defect absorption is attributed to the nucleation and climb motion of disconnections. These experimental results provide an atomistic understanding of how GBs improve the radiation resistance of materials.

8.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S117-21, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543159

RESUMO

Structures of <111> low-angle tilt grain boundaries in yttria-stabilized cubic zirconia bicrystals were characterized by conventional transmission electron microscopy, high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy. It is found that the 0.4 and 4.0 degrees tilt grain boundaries are composed of periodic arrays of edge dislocations with Burgers vectors . The experimentally estimated strain field of each dislocation in the 0.4 degrees tilt boundary was in good agreement with the theoretically predicted strain field from the Peierls-Nabarro model. On the other hand, the estimated strain field of each dislocation in the 4.0 degrees tilt boundary was clearly different from that in the 0.4 degrees tilt boundary, which suggests that the strain fields of neighbouring dislocations interact when the separation distance between dislocations is shorter than a critical value.

9.
Nat Commun ; 10(1): 2112, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068587

RESUMO

In fracture processes, grain boundaries behave as preferential paths for crack propagation. These grain boundary fractures proceed by the atomic-bond rupture within the grain boundary cores, and thus grain boundary structures have crucial influence on the fracture properties. However, the relationship between grain boundary structures and atomic fracture processes has been a matter of conjecture, especially in the case of dopant-segregated grain boundaries which have complicated local structures and chemistries. Here, we determine the atomic-bond breaking path within a dopant-segregated Al2O3 grain boundary core, via atomic-scale observations of the as-fractured surface and the crack tip introduced by in situ nanoindentation experiments inside a transmission electron microscope. Our observations show that the atomic fracture path is selected to produce less coordination-deficient oxygen polyhedra of dopant cations, which is rationalised using first-principles calculations. The present findings indicate that the atomic coordination geometry at the grain boundary core affects the fracture processes.

10.
Sci Rep ; 9(1): 18014, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784638

RESUMO

Silicon carbide (SiC) bicrystals were prepared by diffusion bonding, and their grain boundary was observed using scanning transmission electron microscopy. The n-type electrical conductivity of a SiC single crystal was confirmed by scanning nonlinear dielectric microscopy (SNDM). Dopant profiling of the sample by SNDM showed that the interface acted as an electrical insulator with a ~2-µm-thick carrier depletion layer. The carrier depletion layer contained a higher number of oxygen impurities than the bulk crystals due to the incorporation of oxygen from the native oxide film during diffusion bonding. Density functional theory calculations of the density of states as a function of the bandgap also supported these findings. The existence of a carrier depletion layer was also confirmed in a p-type polycrystalline SiC ceramic. These results suggest that the electrical conductivity of SiC ceramics was mostly affected by carrier depletion near the grain boundary rather than the grain boundary itself.

11.
Sci Rep ; 4: 5684, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25023009

RESUMO

We propose a new sealed battery operating on a redox reaction between an oxide (O(2-)) and a peroxide (O2(2-)) with its theoretical specific energy of 2570 Wh kg(-1) (897 mAh g(-1), 2.87 V) and demonstrate that a Co-doped Li2O cathode exhibits a reversible capacity over 190 mAh g(-1), a high rate capability, and a good cyclability with a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte in acetonitrile. The reversible capacity is largely dominated by the O(2-)/O2(2-) redox reaction between oxide and peroxide with some contribution of the Co(2+)/Co(3+) redox reaction.

12.
Micron ; 43(1): 37-42, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21803589

RESUMO

Theoretical calculations of electron energy loss near edge structures (ELNES) of lattice imperfections, particularly a Ni(111)/ZrO2(111) heterointerface and an Al2O3 stacking fault on the {1100} plane, are performed using a first principles pseudopotential method. The present calculation can qualitatively reproduce spectral features as well as chemical shifts in experiment by employing a special pseudopotential designed for the excited atom with a core-hole. From the calculation, spectral changes observed in O-K ELNES from a Ni/ZrO2 interface can be attributable to interfacial oxygen-Ni interactions. In the O-K ELNES of Al2O3 stacking faults, theoretical calculation suggests that the spectral feature reflects coordination environment and chemical bonding. Powerful combinations of ELNES with a pseudopotential method used to investigate the atomic and electronic structures of lattice imperfections are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA