Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(16): 11357-11364, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32806905

RESUMO

Charge detection mass spectrometry is a single particle technique where the masses of individual ions are determined from simultaneous measurements of each ion's m/z ratio and charge. The ions pass through a conducting cylinder, and the charge induced on the cylinder is detected. The cylinder is usually placed inside an electrostatic linear ion trap so that the ions oscillate back and forth through the cylinder. The resulting time domain signal is analyzed by fast Fourier transformation; the oscillation frequency yields the m/z, and the charge is determined from the magnitudes. The mass resolving power depends on the uncertainties in both quantities. In previous work, the mass resolving power was modest, around 30-40. In this work we report around an order of magnitude improvement. The improvement was achieved by coupling high-accuracy charge measurements (obtained with dynamic calibration) with higher resolution m/z measurements. The performance was benchmarked by monitoring the assembly of the hepatitis B virus (HBV) capsid. The HBV capsid assembly reaction can result in a heterogeneous mixture of intermediates extending from the capsid protein dimer to the icosahedral T = 4 capsid with 120 dimers. Intermediates of all possible sizes were resolved, as well as some overgrown species. Despite the improved mass resolving power, the measured peak widths are still dominated by instrumental resolution. Heterogeneity makes only a small contribution. Resonances were observed in some of the m/z spectra. They result from ions with different masses and charges having similar m/z values. Analogous resonances are expected whenever the sample is a heterogeneous mixture assembled from a common building block.


Assuntos
Proteínas do Capsídeo/análise , Capsídeo/química , Espectrometria de Massas/métodos , Capsídeo/metabolismo , Vírus da Hepatite B/química , Vírus da Hepatite B/metabolismo
2.
Anal Chem ; 92(4): 3285-3292, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31989813

RESUMO

The masses of particles in a bovine milk extracellular vesicle (EV) preparation enriched for exosomes were directly determined for the first time by charge detection mass spectrometry (CDMS). In CDMS, both the mass-to-charge ratio (m/z) and z are determined simultaneously for individual particles, enabling mass determinations for particles that are far beyond the mass limit (∼1.0 MDa) of conventional mass spectrometry (MS). Particle masses and charges span a wide range from m ∼ 2 to ∼90 MDa and z ∼ 50 to ∼1300 e (elementary charges) and are highly dependent upon the conditions used to extract and isolate the EVs. EV particles span a continuum of masses, reflecting the highly heterogeneous nature of these samples. However, evidence for unique populations of particles is obtained from correlation of the charges and masses. An analysis that uses a two-dimensional Gaussian model, provides evidence for six families of particles, four of which having masses in the range expected for exosomes. Complementary proteomics measurements and electron microscopy (EM) imaging are used to further characterize the EVs and confirm that these samples have been enriched in exosomes. The ability to characterize such extremely heterogeneous mixtures of large particles with rapid, sensitive, and high-resolution MS techniques is critical to ongoing analytical efforts to separate and purify exosomes and exosome subpopulations. Direct measurement of each particle's mass and charge is a new means of characterizing the physical and chemical properties of exosomes and other EVs.


Assuntos
Exossomos/química , Espectrometria de Massas/métodos , Leite/citologia , Animais , Bovinos , Cromatografia Líquida , Exossomos/metabolismo , Proteômica
3.
Anal Chem ; 91(21): 14002-14008, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31589418

RESUMO

Charge detection mass spectrometry (CDMS) is emerging as a valuable tool to determine mass distributions for heterogeneous and high-mass samples. It is a single-particle technique where masses are determined for individual ions from simultaneous measurements of their mass-to-charge ratio (m/z) and charge. Ions are trapped in an electrostatic linear ion trap (ELIT) and oscillate back and forth through a detection cylinder. The trap is open and able to trap ions for a small fraction of the total measurement time so most of the ions (>99.8%) in a continuous ion beam are lost. Here, we implement an ion storage scheme where ions are accumulated and stored in a hexapole and then injected into the ELIT at the right time for them to be trapped. This pulsed mode of operation increases the sensitivity of CDMS by more than 2 orders of magnitude, which allows much lower titer samples to be analyzed. A limit of detection of 3.3 × 108 particles/mL was obtained for hepatitis B virus T = 4 capsids with a 1.3 µL sample. The hexapole where the ions are accumulated and stored is a significant distance from the ion trap so ions are dispersed in time by their m/z values as they travel between the hexapole and the ELIT. By varying the delay time between ion release and trapping, different windows of m/z values can be trapped.


Assuntos
Proteínas do Capsídeo/análise , Vírus da Hepatite B/química , Espectrometria de Massas , Eletricidade Estática
4.
J Am Soc Mass Spectrom ; 31(6): 1241-1248, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32353231

RESUMO

Charge detection mass spectrometry (CDMS) depends on the measurement of the charge induced on a cylinder by individual ions by means of a charge-sensitive amplifier. For high-accuracy charge measurements, the detection cylinder is embedded in an electrostatic linear ion trap (ELIT), and the ions oscillate back and forth through the cylinder so that multiple measurements are made. To assign the charge state with a low error rate, the charge of each ion must be determined with an uncertainty (root-mean-square deviation) of around 0.2 elementary charges. We show here that high-accuracy charge measurements can be achieved for large ions by dynamic calibration of the charge measurement using an internal standard. The internal standard is generated by irradiating the detection cylinder, by means of a small antenna, with a radiofrequency signal. Using this approach, we have obtained a relative charge uncertainty of around 5 × 10-4, allowing charge-state resolution to be achieved for single ions with up to 500 charges. In another application of this approach, the detection cylinder is irradiated with a signal that counteracts the transients generated when the potentials on the ELIT end-caps are switched to trapping mode. Using this approach, the dead time after switching (during which the signal cannot be analyzed) has been reduced by more than an order of magnitude. With charge-state resolution for ions with up to 500 charges, we were able to calibrate the charges precisely. The results show that the response of the charge-sensitive amplifier with dynamic calibration is linear to within a small fraction of an elementary charge.

5.
J Am Soc Mass Spectrom ; 31(1): 146-154, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32881508

RESUMO

Charge detection mass spectrometry (CDMS) depends on the measurement of the charge induced on a cylinder by individual ions by means of a charge-sensitive amplifier. Electrical noise limits the accuracy of the charge measurement and the smallest charge that can be detected. Thermal noise in the feedback resistor is a major source of electrical noise. We describe the implementation of a charge-sensitive amplifier without a feedback resistor. The design has significantly reduced 1/f noise facilitating the detection of high m/z ions and substantially reducing the measurement time required to achieve almost perfect charge accuracy. With the new design we have been able to detect individual ions carrying a single charge. This is an important milestone in the development of CDMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA