Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 120(3): 408-424, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37475106

RESUMO

Antimicrobial tolerance is the ability of a microbial population to survive, but not proliferate, during antimicrobial exposure. Significantly, it has been shown to precede the development of bona fide antimicrobial resistance. We have previously identified the two-component system CroRS as a critical regulator of tolerance to antimicrobials like teixobactin in the bacterial pathogen Enterococcus faecalis. To understand the molecular mechanism of this tolerance, we have carried out RNA-seq analyses in the E. faecalis wild-type and isogenic ∆ croRS mutant to determine the teixobactin-induced CroRS regulon. We identified a 132 gene CroRS regulon and demonstrate that CroRS upregulates biosynthesis of all major components of the enterococcal cell envelope in response to teixobactin. This suggests a coordinating role of this regulatory system in maintaining integrity of the multiple layers of the enterococcal envelope during antimicrobial stress, likely contributing to bacterial survival. Using experimental evolution, we observed that truncation of HppS, a key enzyme in the synthesis of the quinone electron carrier demethylmenaquinone, was sufficient to rescue tolerance in the croRS deletion strain. This highlights a key role for isoprenoid biosynthesis in antimicrobial tolerance in E. faecalis. Here, we propose a model of CroRS acting as a master regulator of cell envelope biogenesis and a gate-keeper between isoprenoid biosynthesis and respiration to ensure tolerance against antimicrobial challenge.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Enterococcus faecalis/genética , Proteínas de Bactérias/genética , Homeostase , Terpenos , Testes de Sensibilidade Microbiana
2.
Adv Microb Physiol ; 81: 25-65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36167442

RESUMO

Bacteria have developed resistance against every antimicrobial in clinical use at an alarming rate. There is a critical need for more effective use of antimicrobials to both extend their shelf life and prevent resistance from arising. Significantly, antimicrobial tolerance, i.e., the ability to survive but not proliferate during antimicrobial exposure, has been shown to precede the development of bona fide antimicrobial resistance (AMR), sparking a renewed and rapidly increasing interest in this field. As a consequence, problematic infections for the first time are now being investigated for antimicrobial tolerance, with increasing reports demonstrating in-host evolution of antimicrobial tolerance. Tolerance has been identified in a wide array of bacterial species to all bactericidal antimicrobials. Of particular interest are enterococci, which contain the opportunistic bacterial pathogens Enterococcus faecalis and Enterococcus faecium. Enterococci are one of the leading causes of hospital-acquired infection and possess intrinsic tolerance to a number of antimicrobial classes. Persistence of these infections in the clinic is of growing concern, particularly for the immunocompromised. Here, we review current known mechanisms of antimicrobial tolerance, and include an in-depth analysis of those identified in enterococci with implications for both the development and prevention of AMR.


Assuntos
Anti-Infecciosos , Enterococcus faecium , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Enterococcus
3.
mSphere ; 4(3)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068434

RESUMO

Teixobactin is a new antimicrobial of significant interest. It is active against a number of multidrug-resistant pathogens, including Staphylococcus aureus and Enterococcus faecalis, with no reported mechanisms of teixobactin resistance. However, historically, mechanisms of resistance always exist and arise upon introduction of a new antimicrobial into a clinical setting. Therefore, for teixobactin to remain effective long term, we need to understand how mechanisms of resistance could develop. Here we demonstrate that E. faecalis shows a remarkable intrinsic tolerance to high concentrations of teixobactin. This is of critical importance, as antimicrobial tolerance has been shown to precede the development of antimicrobial resistance. To identify potential pathways responsible for this tolerance, we determined the genomewide expression profile of E. faecalis strain JH2-2 in response to teixobactin using RNA sequencing. A total of 573 genes were differentially expressed (2.0-fold log2 change in expression) in response to teixobactin, with genes involved in cell wall biogenesis and division and transport/binding being among those that were the most upregulated. Comparative analyses of E. faecalis cell wall-targeting antimicrobial transcriptomes identified CroRS, LiaRS, and YclRK to be important two-component regulators of antimicrobial-mediated stress. Further investigation of CroRS demonstrated that deletion of croRS abolished tolerance to teixobactin and to other cell wall-targeting antimicrobials. This highlights the crucial role of CroRS in controlling the molecular response to teixobactin.IMPORTANCE Teixobactin is a new antimicrobial with no known mechanisms of resistance. Understanding how resistance could develop will be crucial to the success and longevity of teixobactin as a new potent antimicrobial. Antimicrobial tolerance has been shown to facilitate the development of resistance, and we show that E. faecalis is intrinsically tolerant to teixobactin at high concentrations. We subsequently chose E. faecalis as a model to elucidate the molecular mechanism underpinning teixobactin tolerance and how this may contribute to the development of teixobactin resistance.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Depsipeptídeos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Regulação Bacteriana da Expressão Gênica , Farmacorresistência Bacteriana , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Bacteriano , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA