Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Ann Rheum Dis ; 82(9): 1227-1239, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344157

RESUMO

OBJECTIVES: The activator protein-1 (AP-1) transcription factor component c-Fos regulates chondrocyte proliferation and differentiation, but its involvement in osteoarthritis (OA) has not been functionally assessed. METHODS: c-Fos expression was evaluated by immunohistochemistry on articular cartilage sections from patients with OA and mice subjected to the destabilisation of the medial meniscus (DMM) model of OA. Cartilage-specific c-Fos knockout (c-FosΔCh) mice were generated by crossing c-fosfl/fl to Col2a1-CreERT mice. Articular cartilage was evaluated by histology, immunohistochemistry, RNA sequencing (RNA-seq), quantitative reverse transcription PCR (qRT-PCR) and in situ metabolic enzyme assays. The effect of dichloroacetic acid (DCA), an inhibitor of pyruvate dehydrogenase kinase (Pdk), was assessed in c-FosΔCh mice subjected to DMM. RESULTS: FOS-positive chondrocytes were increased in human and murine OA cartilage during disease progression. Compared with c-FosWT mice, c-FosΔCh mice exhibited exacerbated DMM-induced cartilage destruction. Chondrocytes lacking c-Fos proliferate less, have shorter collagen fibres and reduced cartilage matrix. Comparative RNA-seq revealed a prominent anaerobic glycolysis gene expression signature. Consistently decreased pyruvate dehydrogenase (Pdh) and elevated lactate dehydrogenase (Ldh) enzymatic activities were measured in situ, which are likely due to higher expression of hypoxia-inducible factor-1α, Ldha, and Pdk1 in chondrocytes. In vivo treatment of c-FosΔCh mice with DCA restored Pdh/Ldh activity, chondrocyte proliferation, collagen biosynthesis and decreased cartilage damage after DMM, thereby reverting the deleterious effects of c-Fos inactivation. CONCLUSIONS: c-Fos modulates cellular bioenergetics in chondrocytes by balancing pyruvate flux between anaerobic glycolysis and the tricarboxylic acid cycle in response to OA signals. We identify a novel metabolic adaptation of chondrocytes controlled by c-Fos-containing AP-1 dimers that could be therapeutically relevant.


Assuntos
Cartilagem Articular , Osteoartrite , Proteínas Proto-Oncogênicas c-fos , Animais , Humanos , Camundongos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Osteoartrite/patologia , Fator de Transcrição AP-1/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética
2.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175575

RESUMO

Osteoarthritis (OA) is the most common degenerative joint disease causing pain and functional limitations. Physical activity as a clinically relevant, effective intervention alleviates pain and promotes joint function. In chondrocytes, perception and transmission of mechanical signals are controlled by mechanosensitive ion channels, whose dysfunction in OA chondrocytes is leading to disease progression. Signaling of mechanosensitive ion channels Piezo/TRPV4 was analyzed by Yoda1/GSK1016790A application and calcium-imaging of Fura-2-loaded chondrocytes. Expression analysis was determined by qPCR and immunofluorescence in healthy vs. OA chondrocytes. Chondrocytes were mechanically stimulated using the Flexcell™ technique. Yoda1 and GSK1016790A caused an increase in intracellular calcium [Ca2+]i for Yoda1, depending on extracellularly available Ca2+. When used concomitantly, the agonist applied first inhibited the effect of subsequent agonist application, indicating mutual interference between Piezo/TRPV4. Yoda1 increased the expression of metalloproteinases, bone-morphogenic protein, and interleukins in healthy and OA chondrocytes to a different extent. Flexcell™-induced changes in the expression of MMPs and ILs differed from changes induced by Yoda1. We conclude that Piezo1/TRPV4 communicate with each other, an interference that may be impaired in OA chondrocytes. It is important to consider that mechanical stimulation may have different effects on OA depending on its intensity.


Assuntos
Cálcio , Mecanotransdução Celular , Humanos , Mecanotransdução Celular/fisiologia , Cálcio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Condrócitos/metabolismo , Dor/metabolismo , Expressão Gênica , Canais Iônicos/genética , Canais Iônicos/metabolismo
3.
Chembiochem ; 23(13): e202100327, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34496130

RESUMO

A code is defined by the nature of the symbols, which are used to generate information-storing combinations (e. g. oligo- and polymers). Like nucleic acids and proteins, oligo- and polysaccharides are ubiquitous, and they are a biochemical platform for establishing molecular messages. Of note, the letters of the sugar code system (third alphabet of life) excel in coding capacity by making an unsurpassed versatility for isomer (code word) formation possible by variability in anomery and linkage position of the glycosidic bond, ring size and branching. The enzymatic machinery for glycan biosynthesis (writers) realizes this enormous potential for building a large vocabulary. It includes possibilities for dynamic editing/erasing as known from nucleic acids and proteins. Matching the glycome diversity, a large panel of sugar receptors (lectins) has developed based on more than a dozen folds. Lectins 'read' the glycan-encoded information. Hydrogen/coordination bonding and ionic pairing together with stacking and C-H/π-interactions as well as modes of spatial glycan presentation underlie the selectivity and specificity of glycan-lectin recognition. Modular design of lectins together with glycan display and the nature of the cognate glycoconjugate account for the large number of post-binding events. They give an entry to the glycan vocabulary its functional, often context-dependent meaning(s), hereby building the dictionary of the sugar code.


Assuntos
Ácidos Nucleicos , Açúcares , Carboidratos/química , Lectinas/metabolismo , Polissacarídeos/química
4.
Histochem Cell Biol ; 157(2): 139-151, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34846578

RESUMO

Galectin-4 (Gal-4) is a member of the galectin family, which have been identified as galactose-binding proteins. Gal-4 possesses two tandem repeat carbohydrate recognition domains and acts as a cross-linking bridge in sulfatide-dependent glycoprotein routing. We herein document its upregulation in osteoarthritis (OA) in correlation with the extent of cartilage degradation in vivo. Primary human OA chondrocytes in vitro respond to carbohydrate-inhibitable Gal-4 binding with the upregulation of pro-degradative/-inflammatory proteins such as interleukin-1ß (IL-1ß) and matrix metalloproteinase-13 (MMP-13), as documented by RT-qPCR-based mRNA profiling and transcriptome data processing. Activation of p65 by phosphorylation of Ser536 within the NF-κB pathway and the effect of three p65 inhibitors on Gal-4 activity support downstream involvement of such signaling. In 3D (pellet) cultures, Gal-4 presence causes morphological and biochemical signs of degradation. Taken together, our findings strongly support the concept of galectins acting as a network in OA pathogenesis and suggest that blocking their activity in disease progression may become clinically relevant in the future.


Assuntos
Condrócitos/química , Galectina 4/genética , Osteoartrite/genética , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Galectina 4/metabolismo , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Bioorg Med Chem ; 75: 117068, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36327696

RESUMO

Pairing glycans with tissue lectins controls multiple effector pathways in (patho)physiology. A clinically relevant example is the prodegradative activity of galectins-1 and -3 (Gal-1 and -3) in the progression of osteoarthritis (OA) via matrix metalloproteinases (MMPs), especially MMP-13. The design of heterobifunctional inhibitors that can block galectin binding and MMPs both directly and by preventing their galectin-dependent induction selectively offers a perspective to dissect the roles of lectins and proteolytic enzymes. We describe the synthesis of such a reagent with a bivalent galectin ligand connected to an MMP inhibitor and of two tetravalent glycoclusters with a subtle change in headgroup presentation for further elucidation of influence on ligand binding. Testing was performed on clinical material with mixtures of galectins as occurring in vivo, using sections of fixed tissue. Two-colour fluorescence microscopy monitored binding to the cellular glycome after optimization of experimental parameters. In the presence of the inhibitor, galectin binding to OA specimens was significantly reduced. These results open the perspective to examine the inhibitory capacity of custom-made ditopic compounds on binding of lectins in mixtures using sections of clinical material with known impact of galectins and MMPs on disease progression.

6.
Molecules ; 27(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630704

RESUMO

Cyrtosperma johnstonii is one of the most interesting traditional medicines for cancer treatment. This study aimed to compare and combine the biological activities related to cancer prevention of the flavonoid glycosides rutin (RT) and isorhamnetin-3-o-rutinoside (IRR) and their hydrolysis products quercetin (QT) and isorhamnetin (IR) from C.johnstonii extract. ABTS and MTT assays were used to determine antioxidant activity and cytotoxicity against various cancer cells, as well as normal cells. Anti-inflammatory activities were measured by ELISA. The results showed that the antioxidant activities of the compounds decreased in the order of QT > IR > RT > IRR, while most leukemia cell lines were sensitive to QT and IR with low toxicity towards PBMCs. The reduction of IL-6 and IL-10 secretion by QT and IR was higher than that induced by RT and IRR. The combination of hydrolysis products (QT and IR) possessed a strong synergism in antioxidant, antiproliferative and anti-inflammatory effects, whereas the combination of flavonoid glycosides and their hydrolysis products revealed antagonism. These results suggest that the potential of the combination of hydrolyzed flavonoids from C. johnstonii can be considered as natural compounds for the prevention of cancer.


Assuntos
Cyrtosperma , Neoplasias , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Glicosídeos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Rutina/farmacologia
7.
BMC Musculoskelet Disord ; 21(1): 387, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546153

RESUMO

BACKGROUND: The importance of sagittal alignment in healthy individuals and in reconstructive spinal surgery has been studied over the last 15 years. The aim of the present study was to assess the long-term effects of abnormal sagittal alignment on hardware after posterior thoracolumbar spinal fusion. METHODS: Patients who had undergone revision surgery (revision cohort, n = 34) due to breakage of their implants were compared retrospectively with patients who had intact implants at the final follow-up investigation after a long posterior thoracolumbar and/or lumbar spinal fusion (control cohort, n = 22). Clinical data and radiological parameters including the sagittal vertical axis (SVA), pelvic incidence (PI), lordosis gap (LG), pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), thoracic kyphosis (TK), and the femoral obliquity angle (FOA) were assessed on full-spine lateral radiographs obtained in regular standing position. Data were analysed using descriptive statistics, parametric and non-parametric inferential statistics. RESULTS: Patients in the breakage group (female n = 21, male n = 9, mean age 60.9 ± 15.6 years) had a higher anterior shift of the C7 plumb line (SVA) (p = 0.02), retroversion of the pelvis (PT) (p < 0.001), PI-LL mismatch (LG) (p = 0.001), and PI (p = 0.002) than the intact group (female n = 10, male n = 12, mean age 65.7 ± 12.4 years). No significant difference was registered between groups in regard of SS, LL, TK, FOA, and the mean number of comorbidities. CONCLUSION: Failure of restoration of the SVA and the LG to the acceptable ranges, especially in patients with a high PI, may be regarded as a risk factor for the long-term failure of implants after posterior thoracolumbar spinal fusion.


Assuntos
Vértebras Lombares/cirurgia , Escoliose/cirurgia , Fusão Vertebral/métodos , Vértebras Torácicas/cirurgia , Idoso , Feminino , Humanos , Cifose/patologia , Cifose/cirurgia , Modelos Logísticos , Lordose/patologia , Lordose/cirurgia , Masculino , Pessoa de Meia-Idade , Postura/fisiologia , Radiografia , Reoperação , Estudos Retrospectivos , Sacro/cirurgia , Resultado do Tratamento
8.
Am J Hum Genet ; 99(3): 607-623, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588448

RESUMO

Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained. We assumed age-dependent penetrance of mutations in a so far unknown gene causing late-onset CMT2. We screened 51 index case subjects with late-onset CMT2 for mutations by whole-exome (WES) and Sanger sequencing and subsequently queried WES repositories for further case subjects carrying mutations in the identified candidate gene. We studied nerve pathology and tissue levels and function of the abnormal protein in order to explore consequences of the mutations. Altogether, we observed heterozygous rare loss-of-function and missense mutations in MME encoding the metalloprotease neprilysin in 19 index case subjects diagnosed with axonal polyneuropathies or neurodegenerative conditions involving the peripheral nervous system. MME mutations segregated in an autosomal-dominant fashion with age-related incomplete penetrance and some affected individuals were isolated case subjects. We also found that MME mutations resulted in strongly decreased tissue availability of neprilysin and impaired enzymatic activity. Although neprilysin is known to degrade ß-amyloid, we observed no increased amyloid deposition or increased incidence of dementia in individuals with MME mutations. Detection of MME mutations is expected to increase the diagnostic yield in late-onset polyneuropathies, and it will be tempting to explore whether substances that can elevate neprilysin activity could be a rational option for treatment.


Assuntos
Axônios/patologia , Genes Dominantes/genética , Mutação/genética , Neprilisina/genética , Polineuropatias/genética , Polineuropatias/patologia , Tecido Adiposo/metabolismo , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Alelos , Peptídeos beta-Amiloides/metabolismo , Animais , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Análise Mutacional de DNA , Bases de Dados Genéticas , Demência/complicações , Demência/genética , Exoma/genética , Heterozigoto , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Neprilisina/análise , Neprilisina/sangue , Neprilisina/deficiência , Penetrância , Polineuropatias/complicações , Pele/metabolismo , Nervo Sural
9.
Cell Mol Life Sci ; 75(22): 4187-4205, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29934665

RESUMO

The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture. We show that the presence of tandem-repeat-type galectin-8 significantly correlated with cartilage degeneration and that it is secreted by osteoarthritic chondrocytes. Glycan-inhibitable surface binding of galectin-8 to these cells increased gene transcription and the secretion of functional disease markers. The natural variant galectin-8 (F19Y) was less active than the prevalent form. Genome-wide array analysis revealed induction of a pro-degradative/inflammatory gene signature, largely under control of NF-κB signaling. This signature overlapped with respective gene-expression patterns elicited by galectins-1 and -3, but also presented supplementary features. Functional assays with mixtures of galectins that mimic the pathophysiological status unveiled cooperation between the three galectins. Our findings shape the novel concept to consider individual galectins as part of a so far not realized teamwork in osteoarthritis pathogenesis, with relevance beyond this disease.


Assuntos
Galectinas/metabolismo , Osteoartrite/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Proteínas Sanguíneas , Células Cultivadas , Condrócitos/metabolismo , Progressão da Doença , Feminino , Galectina 1/metabolismo , Galectina 3/metabolismo , Galectinas/genética , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo
10.
J Immunol ; 196(4): 1910-21, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792806

RESUMO

Osteoarthritis is a degenerative joint disease that ranks among the leading causes of adult disability. Mechanisms underlying osteoarthritis pathogenesis are not yet fully elucidated, putting limits to current disease management and treatment. Based on the phenomenological evidence for dysregulation within the glycome of chondrocytes and the network of a family of adhesion/growth-regulatory lectins, that is, galectins, we tested the hypothesis that Galectin-1 is relevant for causing degeneration. Immunohistochemical analysis substantiated that Galectin-1 upregulation is associated with osteoarthritic cartilage and subchondral bone histopathology and severity of degeneration (p < 0.0001, n = 29 patients). In vitro, the lectin was secreted and it bound to osteoarthritic chondrocytes inhibitable by cognate sugar. Glycan-dependent Galectin-1 binding induced a set of disease markers, including matrix metalloproteinases and activated NF-κB, hereby switching on an inflammatory gene signature (p < 10(-16)). Inhibition of distinct components of the NF-κB pathway using dedicated inhibitors led to dose-dependent impairment of Galectin-1-mediated transcriptional activation. Enhanced secretion of effectors of degeneration such as three matrix metalloproteinases underscores the data's pathophysiological relevance. This study thus identifies Galectin-1 as a master regulator of clinically relevant inflammatory-response genes, working via NF-κB. Because inflammation is critical to cartilage degeneration in osteoarthritis, this report reveals an intimate relation of glycobiology to osteoarthritic cartilage degeneration.


Assuntos
Galectina 1/metabolismo , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Glicômica , Humanos , Imuno-Histoquímica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Osteoartrite/genética , Osteoartrite/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Histochem Cell Biol ; 147(2): 239-256, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28012132

RESUMO

One route of realizing the information of glycans involves endogenous receptors (lectins). Occurrence at branch ends renders galactosides particularly accessible. Thus, they are suited for such a recognition process. Fittingly, these epitopes serve as physiological ligands. The ga(lactoside-binding) lectins share the ß-sandwich fold with a sequence signature around a central tryptophan residue besides this specificity. Three modes of presentation of the carbohydrate recognition domain are known for galectins, and genome monitoring from fungi to mammals discloses that galectins form a network. The extent of its complexity varies considerably between organisms, for chicken reaching seven proteins, more for mammals. The current status of network analysis reveals overlapping and distinct expression profiles. Matching intra- and extracellular galectin presence, they have a broad range of functions at each site depending on their specific counterreceptor(s), with the possibility even for functional antagonism between family members. Orchestration of expression of galectin, the cognate glycan, its scaffold (protein or sphingolipid) and spatial aspects of glycoconjugate presentation has been detected to lead to growth regulation of immune and tumor cells. To delineate the factors that underlie the specificity of a galectin for its counterreceptor(s) in the cellular context and the details of structure-activity relationships by comparatively analyzing natural and rationally engineered proteins is the main challenge for ongoing research.


Assuntos
Galectinas/imunologia , Imunidade , Neoplasias/imunologia , Humanos , Neoplasias/fisiopatologia
12.
Curr Rheumatol Rep ; 17(8): 54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26163305

RESUMO

In light of the growing global health problem associated with osteoarthritis, herbal remedies have become an important research focus in the scientific and medical community, and numerous studies have been published to identify their biological effects and mechanisms in vitro and in vivo. This review is a snapshot of the most recent clinical trials on the efficacy of medical plant extracts in knee osteoarthritis patients, and provides relevant background information on the biological mechanisms that may underlie the clinical observations. Therefore, we performed a PubMed literature survey and discussed a selection of clinical trials in the field, with special attention being drawn to the design and outcome measures of the studies. We further spotlighted on issues relating to the efficacy and safety of the plant extracts and discussed major challenges for upcoming studies in the field, which include the need for rigorously designed in vivo and in vitro studies, as well as the elucidation of potential additive effects and structure-modifying activities beyond symptom relief.


Assuntos
Osteoartrite do Joelho/tratamento farmacológico , Fitoterapia/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Acacia , Boswellia , Cichorium intybus , Curcuma , Zingiber officinale , Humanos , Passiflora , Extratos Vegetais/uso terapêutico , Prunus avium , Projetos de Pesquisa , Scutellaria baicalensis
13.
BMC Dev Biol ; 14: 36, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25164565

RESUMO

BACKGROUND: The switch from cartilage template to bone during endochondral ossification of the growth plate requires a dynamic and close interaction between cartilage and the developing vasculature. Vascular invasion of the primarily avascular hypertrophic chondrocyte zone brings chondroclasts, osteoblast- and endothelial precursor cells into future centres of ossification.Vascularization of human growth plates of polydactylic digits was studied by immunohistochemistry, confocal-laser-scanning-microscopy and RT-qPCR using markers specific for endothelial cells CD34 and CD31, smooth muscle cells α-SMA, endothelial progenitor cells CD133, CXCR4, VEGFR-2 and mesenchymal progenitor cells CD90 and CD105. In addition, morphometric analysis was performed to quantify RUNX2+ and DLX5+ hypertrophic chondrocytes, RANK+ chondro- and osteoclasts, and CD133+ progenitors in different zones of the growth plate. RESULTS: New vessels in ossification centres were formed by sprouting of CD34+ endothelial cells that did not co-express the mature endothelial cell marker CD31. These immature vessels in the growth plate showed no abluminal coverage with α-SMA+ smooth muscle cells, but in their close proximity single CD133+ precursor cells were found that did not express VEGFR-2, a marker for endothelial lineage commitment. In periosteum and in the perichondrial groove of Ranvier that harboured CD90+/CD105+ chondro-progenitors, in contrast, mature vessels were found stabilized by α-SMA+ smooth muscle cells. CONCLUSION: Vascularization of ossification centres of the growth plate was mediated by sprouting of capillaries coming from the bone collar or by intussusception rather than by de-novo vessel formation involving endothelial progenitor cells. Vascular invasion of the joint anlage was temporally delayed compared to the surrounding joint tissue.


Assuntos
Lâmina de Crescimento/fisiologia , Neovascularização Fisiológica , Osteogênese , Polidactilia/cirurgia , Diferenciação Celular , Células Cultivadas , Pré-Escolar , Condrócitos/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Polidactilia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Histochem Cell Biol ; 142(4): 373-88, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24981556

RESUMO

The apparent connection of galectin-3 to chondrocyte survival and osteoarthritis-like cartilage modifications in animal models provided incentive for the mapping of seven members of this family of adhesion/growth-regulatory proteins in human cartilage specimens. Starting with work in vitro, RT-qPCR analyses and immunocytochemistry revealed gene transcription and protein presence in cultured OA chondrocytes, especially for galectin-1, galectin-3 and galectin-8. Immunohistochemistry in clinical specimens with mild and severe cartilage degeneration detected galectins in chondrocytes-with upregulation, especially of galectin-1 in areas of severe degeneration-accompanied by α2,6-sialylation in the pericellular matrix. Given the possibility for additive/antagonistic activities between galectins, these results direct further research toward examining cellular effects of (1) these proteins (alone or in combination) on chondrocytes and (2) remodeling of the chondrocyte glycophenotype.


Assuntos
Cartilagem Articular/metabolismo , Galectinas/metabolismo , Articulação do Joelho/metabolismo , Osteoartrite do Joelho/metabolismo , Osteossarcoma/metabolismo , Regulação para Cima , Adolescente , Cartilagem Articular/patologia , Criança , Condrócitos/metabolismo , Condrócitos/patologia , Feminino , Humanos , Imuno-Histoquímica , Articulação do Joelho/patologia , Masculino , Osteoartrite do Joelho/diagnóstico , Osteossarcoma/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Células Tumorais Cultivadas
15.
3D Print Med ; 9(1): 27, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768399

RESUMO

Due to its high printing resolution and ability to print multiple materials simultaneously, inkjet technology has found wide application in medicine. However, the biological safety of 3D-printed objects is not always guaranteed due to residues of uncured resins or support materials and must therefore be verified. The aim of this study was to evaluate the quality of standard assessment methods for determining the quality and properties of polyjet-printed scaffolds in terms of their dimensional accuracy, surface topography, and cytotoxic potential.Standardized 3D-printed samples were produced in two printing orientations (horizontal or vertical). Printing accuracy and surface roughness was assessed by size measurements, VR-5200 3D optical profilometer dimensional analysis, and scanning electron microscopy. Cytotoxicity tests were performed with a representative cell line (L929) in a comparative laboratory study. Individual experiments were performed with primary cells from clinically relevant tissues and with a Toxdent cytotoxicity assay.Dimensional measurements of printed discs indicated high print accuracy and reproducibility. Print accuracy was highest when specimens were printed in horizontal direction. In all cytotoxicity tests, the estimated mean cell viability was well above 70% (p < 0.0001) regardless of material and printing direction, confirming the low cytotoxicity of the final 3D-printed objects.

16.
Glycobiology ; 22(3): 389-99, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22038479

RESUMO

Oligomannosidic (OM) N-glycans occur as a mixture of isomers, which at early stages of glycosidase trimming also comprise structures with one to three glucose residues. A complementary set of isomers is generated during the biosynthesis of the lipid-linked precursor. Here, we demonstrate the remarkable capacity of liquid chromatography (LC) with porous graphitic carbon and mass spectrometric detection for the determination of OM isomers. Protein-linked N-glycans were released enzymatically from samples with known isomer composition such as kidney bean proteins and ribonuclease B. Lipid-linked oligosaccharides were obtained by a direct mild acid hydrolysis of microsomes thus avoiding biphasic partitioning. A parallel analysis of pyridylaminated glycans by amide-silica and reversed-phase high-performance LC, the application of branch-specific α-mannosidases and work with ALG mutant plants led to the assignment of the relative retention times of the isomers occurring during the degradation of the Glc(3)Man(9)GlcNAc(2) precursor oligosaccharide to Man(5)GlcNAc(2) and beyond. A tightly woven net of evidence supports these assignments. Noteworthy, this isomer assignment happens in the course of a comprehensive analysis of all types of a sample's N-glycans.


Assuntos
Dolicóis/análogos & derivados , Glicoproteínas de Membrana/química , Oligossacarídeos/química , Arabidopsis , Proteínas de Arabidopsis/química , Configuração de Carboidratos , Sequência de Carboidratos , Células Cultivadas , Cromatografia Líquida/métodos , Dolicóis/química , Proteínas Fúngicas/química , Grafite/química , Humanos , Manosidases/química , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/metabolismo , Phaseolus , Pichia , Folhas de Planta/química , Porosidade , Cultura Primária de Células , Espectrometria de Massas por Ionização por Electrospray , Terminologia como Assunto
17.
Front Bioeng Biotechnol ; 10: 886360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782494

RESUMO

Osteoarthritis (OA), a chronic debilitating joint disease affecting hundreds of million people globally, is associated with significant pain and socioeconomic costs. Current treatment modalities are palliative and unable to stop the progressive degeneration of articular cartilage in OA. Scientific attention has shifted from the historical view of OA as a wear-and-tear cartilage disorder to its recognition as a whole-joint disease, highlighting the contribution of other knee joint tissues in OA pathogenesis. Despite much progress in the field of microfluidic systems/organs-on-a-chip in other research fields, current in vitro models in use do not yet accurately reflect the complexity of the OA pathophenotype. In this review, we provide: 1) a detailed overview of the most significant recent developments in the field of microsystems approaches for OA modeling, and 2) an OA-pathophysiology-based bioengineering roadmap for the requirements of the next generation of more predictive and authentic microscale systems fit for the purpose of not only disease modeling but also of drug screening to potentially allow OA animal model reduction and replacement in the near future.

18.
Front Bioeng Biotechnol ; 10: 837087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252144

RESUMO

The re-creation of physiological cellular microenvironments that truly resemble complex in vivo architectures is the key aspect in the development of advanced in vitro organotypic tissue constructs. Among others, organ-on-a-chip technology has been increasingly used in recent years to create improved models for organs and tissues in human health and disease, because of its ability to provide spatio-temporal control over soluble cues, biophysical signals and biomechanical forces necessary to maintain proper organotypic functions. While media supply and waste removal are controlled by microfluidic channel by a network the formation of tissue-like architectures in designated micro-structured hydrogel compartments is commonly achieved by cellular self-assembly and intrinsic biological reorganization mechanisms. The recent combination of organ-on-a-chip technology with three-dimensional (3D) bioprinting and additive manufacturing techniques allows for an unprecedented control over tissue structures with the ability to also generate anisotropic constructs as often seen in in vivo tissue architectures. This review highlights progress made in bioprinting applications for organ-on-a-chip technology, and discusses synergies and limitations between organ-on-a-chip technology and 3D bioprinting in the creation of next generation biomimetic in vitro tissue models.

19.
Antioxidants (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209813

RESUMO

Hydrogen sulfide (H2S) is an important mediator of inflammatory processes. However, controversial findings also exist, and its underlying molecular mechanisms are largely unknown. Recently, the byproducts of H2S, per-/polysulfides, emerged as biological mediators themselves, highlighting the complex chemistry of H2S. In this study, we characterized the biological effects of P*, a slow-releasing H2S and persulfide donor. To differentiate between H2S and polysulfide-derived effects, we decomposed P* into polysulfides. P* was further compared to the commonly used fast-releasing H2S donor sodium hydrogen sulfide (NaHS). The effects on oxidative stress and interleukin-6 (IL-6) expression were assessed in ATDC5 cells using superoxide measurement, qPCR, ELISA, and Western blotting. The findings on IL-6 expression were corroborated in primary chondrocytes from osteoarthritis patients. In ATDC5 cells, P* not only induced the expression of the antioxidant enzyme heme oxygenase-1 via per-/polysulfides, but also induced activation of Akt and p38 MAPK. NaHS and P* significantly impaired menadione-induced superoxide production. P* reduced IL-6 levels in both ATDC5 cells and primary chondrocytes dependent on H2S release. Taken together, P* provides a valuable research tool for the investigation of H2S and per-/polysulfide signaling. These data demonstrate the importance of not only H2S, but also per-/polysulfides as bioactive signaling molecules with potent anti-inflammatory and, in particular, antioxidant properties.

20.
Cartilage ; 13(2_suppl): 336S-345S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-31370667

RESUMO

OBJECTIVE: Functional cartilage repair requires the new formation of organized hyaline cartilaginous matrix to avoid the generation of fibrous repair tissue. The potential of mesenchymal progenitors was used to assemble a 3-dimensional structure in vitro, reflecting the zonation of collagen matrix in hyaline articular cartilage. DESIGN: The 3-dimensional architecture of collagen alignment in pellet cultures of chondroprogenitors (CPs) was assessed with Picrosirius red staining analyzed under polarized light. In parallel assays, the trilineage capability was confirmed by calcium deposition during osteogenesis by alizarin S staining and alkaline phosphatase staining. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), mRNA levels of ALP, RUNX2, and BGLAP were assessed after 21 days of osteoinduction. Lipid droplets were stained with oil red O and adipogenic differentiation was confirmed by RT-qPCR analysis of PPARG and LPL gene expression. RESULTS: Under conditions promoting the chondrogenic signature in self-assembling constructs, CPs formed an aligned extracellular matrix, positive for glycosaminoglycans and collagen type II, showing developing zonation of birefringent collagen fibers along the cross section of pellets, which reflect the distribution of collagen fibers in hyaline cartilage. Induced osteogenic and adipogenic differentiation confirmed the trilineage potential of CPs. CONCLUSION: This model promotes the differentiation and self-organization of postnatal chondroprogenitors, resulting in the formation of zonally organized engineered hyaline cartilage comparable to the 3 zones of native cartilage.


Assuntos
Cartilagem Articular , Condrogênese , Células Cultivadas , Matriz Extracelular , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA