RESUMO
Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.
RESUMO
Inspired by natural living things such as lotus leaves and pitcher plants, researchers have developed many excellent antifouling coatings. In particular, hot-water-repellent surfaces have received much attention in recent years because of their wide range of applications. However, coatings with stability against boiling in hot water have not been achieved yet. Long-chain perfluorinated materials, which are often used for liquid-repellent coatings owing to their low surface energy, hinder the potential application of antifouling coatings in food containers. Herein, we design a fluorine-free slippery surface that immobilizes a biocompatible lubricant layer on a phenyl-group-modified smooth solid surface through OH-π interactions. The smooth base layer was fabricated by modification of phenyltriethoxysilane through a sol-gel method. The π-electrons of the phenyl groups interact with the carboxyl group of the oleic acid used as a lubricant, which facilitates immobilization on the base layer. Water droplets slid off the surface in the temperature range from 20 to 80 °C at very low sliding angles (<2°). Furthermore, we increased the π-electron density in the base layer to strengthen the OH-π interactions, which improved long-term boiling stability under hot water. We believe that this surface will be applied in fields in which the practical use of antifouling coatings is desirable, such as food containers, drink cans, and glassware.