Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 45(6): 1981-1994, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30194560

RESUMO

The Cichlid fish Sarotherodon melanotheron is typically found in West and Central African estuaries and lagoons. It represents a good candidate for promoting tilapia farming in brackish waters. Understanding the genetic diversity in its populations from the hydrographical basins of Southern Benin is primordial before designing selective breeding programs. For this purpose, 202 samples collected from four rivers of Southern Benin and were genotyped using 15 polymorphic microsatellite DNA markers. Each river was split up into three sampling sites. We found significant global linkage disequilibrium across the genome of natural populations of this tilapia species overall the loci. However, when the loci that display aberrant Wright's (FIS and FST) were removed from the data, a linkage disequilibrium was detected for the remaining 11 loci and became compatible with the null hypothesis. Null alleles explained at least 20.58% of FIS variation. We found a significant isolation by distance across subsamples. Effective population size averaged 210 individuals, with a range from 36 to 517 individuals. Assuming that 79% of heterozygote deficits are explained by sib mating lead to a rough estimate of rsm = 0.4 of mating rate between full sibs within S. melanotheron subpopulations. The fish size correlated positively and significantly with the observed FIS (r = 0.58; p value = 0.04806). Reproduction system (endogamy) in S. melanotheron could explain the strong heterozygote deficit observed. Our results provide technical guidance for efficient management of this tilapia species' genetic resources for breeding programs in fresh and brackish waters.


Assuntos
Aquicultura/métodos , Tilápia/genética , Animais , Benin , Ciclídeos/genética , Conservação dos Recursos Naturais , Variação Genética , Genética Populacional/métodos , Genótipo , Técnicas de Genotipagem/métodos , Repetições de Microssatélites
2.
Gen Comp Endocrinol ; 205: 142-50, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25058367

RESUMO

Oestrogens and insulin-like growth factors (Igfs) play both a central role in the regulation of reproduction and growth and can interact especially in species showing a clear-cut sex-linked growth dimorphism (SGD) like in tilapia. Aromatase is essential in ovarian differentiation and oogenesis since it controls oestrogen synthesis. During tilapia sex differentiation, aromatase cyp19a1a expression increases from 9 days post-fertilization (dpf), resulting in high oestradiol level. High temperature, exogenous androgens or aromatase inhibitors override genetic sex differentiation inducing testes development through the suppression of cyp19a1a gene expression and aromatase activity. Supplementation with 17ß-oestradiol (E2) of gonadectomized juveniles induced a sustained and higher E2 plasma level than in intact or gonadectomized controls and both sexes showed reduced growth. Juvenile and mature females treated with the aromatase inhibitor 1,4,6-androstatriene-3,17-dione had 19% lower E2 plasma level compared to controls and they showed a 32% increased growth after 28 days of treatment. Altogether, these data suggest that E2 inhibits female growth leading to the SGD. Regarding Igf-1, mRNA and peptide appeared in liver at ∼ 4 dpf and then in organs involved in growth and metabolism, indicating a role in early growth, metabolism and organogenesis. Gonad igf-1 showed an early expression and the peptide could be detected at ∼ 7 dpf in somatic cells. It appeared in germ cells at the onset of ovarian (29 dpf) and testicular (52 dpf) meiosis. In testis, Igf-1 together with steroids may regulate spermatogenesis whereas in ovary it participates in steroidogenesis regulation. Igf-1 and Igf-2 promote proliferation of follicular cells and oocyte maturation. Igf-3 expression is gonad specific and localized in the ovarian granulosa or testicular interstitial cells. In developing gonads igf-3 is up-regulated in males but down-regulated in females. In contrast, bream Gh injections increased igf-1 mRNA in male and female liver and ovaries but gonadal igf-3 was not affected. Thus, local Igf-1 and Igf-2 may play crucial roles in the formation, development and function of gonads while Igf-3 depending on the species is involved in male and female reproduction. Furthermore, precocious ethynylestradiol (EE) exposure induced lasting effects on growth, through pituitary gh inhibition, local suppression of igf-1 expression and in testis only down-regulation of igf-3 mRNA. In conclusion, SGD in tilapia may be driven through an inhibitory effect due to E2 synthesis in female and involving Igfs regulation.


Assuntos
Ciclídeos/crescimento & desenvolvimento , Ciclídeos/metabolismo , Estrogênios/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Reprodução , Adolescente , Animais , Peso Corporal , Ciclídeos/sangue , Ciclídeos/genética , Estradiol/sangue , Feminino , Imunofluorescência , Humanos , Masculino , Ovário/metabolismo , RNA Mensageiro/metabolismo , Reprodução/efeitos dos fármacos , Diferenciação Sexual/fisiologia , Testículo/metabolismo
3.
BMC Genet ; 12: 102, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22151746

RESUMO

BACKGROUND: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. RESULTS: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. CONCLUSIONS: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.


Assuntos
Ciclídeos/genética , África , Migração Animal , Animais , Variação Genética , Genética Populacional , Repetições de Microssatélites , Filogeografia
4.
PeerJ ; 7: e7709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579600

RESUMO

Sex determination and sex chromosomes can be very diverse between teleost species. The group of tilapias shows a polymorphism in sex determination not only between closely related species but also between domestic strains within a species. In the Nile tilapia, the major effect genes and therefore the Y chromosome have been located on either linkage group 1 (LG1) or LG23 depending on the strains. In a Japanese strain, the sex determinant of LG23 (the amhY gene) has been identified as a duplicated amh (anti-Müllerian hormone) gene, with its gametolog found on the X chromosome (amhX). AmhY is located in tandem with the amhΔY gene (a truncated form) on the Y chromosome. X and Y chromosome markers based on the amh genes have been validated only on a few domestic strains but not in wild populations. Here, we used four of these markers in order to examine (1) the possible variation in sex determination of a wild population of Nile tilapia living in Lake Kou (Burkina Faso), (2) putative polymorphisms for these amh copies and (3) the existence of sex reversed individuals in the wild. Our genotyping of 91 wild Kou individuals with the amh sex-diagnostic markers of LG23 showed that while phenotypic females were all XX, phenotypic males were either XY or XX. Progeny testing of eight of these XX males revealed that one of these males consistently sired all-female progenies, suggesting that it is a wild sex reversed male (which could result from high temperature effects). The other XX males gave balanced sex ratios, suggesting that sex is controlled by another locus (possibly on another LG) which may be epistatically dominant over the LG23 locus. Finally, identification of unexpected amh genotypes was found for two individuals. They produced either balanced or female-biased sex ratios, depending on the breeder with whom they were crossed, suggesting possible recombination between the X and the Y chromosomes.

5.
Lipids ; 54(5): 329-345, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31006877

RESUMO

The main objective of this study was to determine the best vegetable oils (VO) for nutrition of African catfish by assessing the effects of a complete replacement of fish oil (FO) by different VO sources on its growth performance, fatty acid composition, and elongase-desaturase gene expression levels. Fish (16.2 g of initial body weight) were fed with five experimental isonitrogenous, isolipidic, and isoenergetic diets in which FO was totally replaced by cottonseed oil (CO), palm oil (PO), desert date oil (DO), or Shea butter (SB). Complete replacement of FO with VO did not affect growth performance except for low values in fish fed SB diet. Muscle n-3 LC-polyunsaturated fatty acids (PUFA) were significantly reduced in fish fed VO-based diets when compared with FO fed fish. However, the muscle arachidinic acid (ARA) levels in phospholipid class were 1.4 to 1.6 times higher in fish fed CO and DO diets than FO fed fish despite the lower ARA suppliers from these VO-based diets, suggesting endogenous LC-PUFA biosynthesis from PUFA precursors in fish fed these VO. The fads2 and elovl5 gene expression levels in liver of fish fed DO were also higher compared to FO controls. Therefore, all the results support the hypothesis that African catfish has higher biosynthesis capacity to convert vegetable n-6 PUFA precursors like linoleic acid (LNA, 18:2n-6) into n-6 LC-PUFA of the ARA type, compared to the conversion of vegetable α-linolenic acid (ALA, 18:3n-3) into n-3 LC-PUFA of the eicosapentanoic acid (EPA) or docosahexanoic acid (DHA) type. The results also indicate that DO can be recommended as the best alternative to FO replacement in African catfish nutrition.


Assuntos
Peixes-Gato/crescimento & desenvolvimento , Ácidos Graxos Ômega-6/biossíntese , Óleos de Plantas/farmacologia , Animais
6.
Sci Rep ; 9(1): 16767, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727970

RESUMO

Nile tilapia (Oreochromis niloticus) is a globally significant aquaculture species rapidly gaining status as a farmed commodity. In West Africa, wild Nile tilapia genetic resources are abundant yet knowledge of fine-scale population structure and patterns of natural genetic variation are limited. Coinciding with this is a burgeoning growth in tilapia aquaculture in Ghana and other countries within the region underpinned by locally available genetic resources. Using 192 single nucleotide polymorphism (SNP) markers this study conducted a genetic survey of Nile tilapia throughout West Africa, sampling 23 wild populations across eight countries (Benin, Burkina Faso, Côte d'Ivoire, Ghana, Togo, Mali, Gambia and Senegal), representing the major catchments of the Volta, Niger, Senegal and Gambia River basins. A pattern of isolation-by-distance and significant spatial genetic structure was identified throughout West Africa (Global FST = 0.144), which largely corresponds to major river basins and, to a lesser extent, sub-basins. Two populations from the Gambia River (Kudang and Walekounda), one from the western Niger River (Lake Sélingué) and one from the upper Red Volta River (Kongoussi) showed markedly lower levels of diversity and high genetic differentiation compared to all other populations, suggesting genetically isolated populations occurring across the region. Genetic structure within the Volta Basin did not always follow the pattern expected for sub-river basins. This study identifies clear genetic structuring and differentiation amongst West African Nile tilapia populations, which concur with broad patterns found in previous studies. In addition, we provide new evidence for fine-scale genetic structuring within the Volta Basin and previously unidentified genetic differences of populations in Gambia. The 192 SNP marker suite used in this study is a useful tool for differentiating tilapia populations and we recommend incorporating this marker suite into future population screening of O. niloticus. Our results form the basis of a solid platform for future research on wild tilapia genetic resources in West Africa, and the identification of potentially valuable germplasm for use in ongoing breeding programs for aquaculture.


Assuntos
Ciclídeos/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , África Ocidental , Animais , Aquicultura , Ciclídeos/classificação , Evolução Molecular , Variação Genética , Genética Populacional , Filogenia , Densidade Demográfica , Rios
7.
J Exp Zool A Ecol Integr Physiol ; 327(1): 28-37, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28247501

RESUMO

The African catfish Clarias gariepinus has a genetic sex determination system in which high temperature induces masculinization. The thermosensitive period for sex differentiation is short and occurs very early (from 6 to 8 days posthatching [dph]). As young juveniles can encounter high masculinizing temperature (36.5°C) in African water points, we aimed to determine the thermal preference of sexually undifferentiated juveniles and investigate if they spontaneously move toward high masculinizing temperature. Experiments were carried out in an environmental continuum (28-28-28°C and 28-32-36.5°C) made up of three 50-L aquariums connected together. Four hundred larvae from 10 different full-sib progenies were reared successively from 2 to 14 dph in these facilities. Before and after thermal treatments, fish were reared at 28°C until sex ratio determination at 70 dph. In the control continuum, fish were nearly equally distributed in the three compartments. Conversely, in the thermal continuum, compartment occupation significantly differed with progeny and period. During the highly thermosensitive period, two of five progenies significantly preferred (54.7% and 39.8% occupation) the 36.5°C compartment. All tested progenies reared in thermal continuum and separated 36.5°C aquarium showed a skewed sex ratio toward the male phenotype (78-100%). Nevertheless, no correlation was found between 36.5°C compartment occupation and sex ratio in thermal continuum groups. As masculinization temperature could be encountered in African water points during the spawning season, we discussed the adaptive advantage for the African catfish to display a sex differentiation process controlled by a temperature effect.


Assuntos
Peixes-Gato/crescimento & desenvolvimento , Diferenciação Sexual/fisiologia , Animais , Peixes-Gato/fisiologia , Feminino , Masculino , Razão de Masculinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA