Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Haematol ; 204(3): 757-758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228136

RESUMO

In their paper, Hannan et al. suggest that new approaches to the management of the acute and remission phases of thrombotic thrombocytopenic purpura should be considered to address white matter changes seen in patients undergoing magnetic resonance imaging. Timely intervention may have significant implications for the long-term physical and mental health of patients. Commentary on: Hannan et al. Cognitive decline in thrombotic thrombocytopenic purpura survivors: The role of white matter health as assessed by MRI. Br J Haematol 2024;204:1005-1016.


Assuntos
Disfunção Cognitiva , Púrpura Trombocitopênica Trombótica , Humanos , Púrpura Trombocitopênica Trombótica/patologia , Encéfalo/patologia
2.
Br J Haematol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39111105

RESUMO

There has been an expansion in our understanding of the multifaceted roles of circulating blood cells in regulating haemostasis and contributing to thrombosis. Notably, there is greater recognition of the interplay between coagulation with inflammation and innate immune activation and the contribution of leucocytes. The full blood count (FBC) is a time-honoured test in medicine; however, its components are often viewed in isolation and without consideration of their haemostatic and thrombotic potential. Here, we review how the individual components of the FBC, that is, haemoglobin, platelets and leucocytes, engage with the haemostatic system and focus on both their quantitative and qualitative attributes. We also explore how this information can be harnessed into better management of people with multiple long-term conditions because of their higher risk of adverse clinical events.

3.
J Thromb Haemost ; 22(8): 2140-2146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815754

RESUMO

It is increasingly apparent that the pathologic interplay between coagulation and innate immunity, ie, immunothrombosis, forms the common basis of many challenges across the boundaries of specialized medicine and cannot be fully explained by the conventional concepts of cascade and cell-based coagulation. To improve our understanding of coagulation, we propose a model of coagulation that converges with inflammation and innate immune activation as a unified response toward vascular injury. Evolutionarily integral to the convergent response are damage-associated molecular patterns, which are released as a consequence of injury. Damage-associated molecular patterns facilitate diverse interactions within and between systems, not only to complement and reinforce cell-based clot formation but also to steer the response toward clot resolution and wound healing. By extending coagulation beyond its current boundaries, the convergent model aims to deliver novel diagnostics and therapeutics for contemporary and unexpected challenges across medicine, as exposed by COVID-19 and vaccine-induced immune thrombotic thrombocytopenia.


Assuntos
Coagulação Sanguínea , COVID-19 , Imunidade Inata , Humanos , COVID-19/imunologia , COVID-19/sangue , Trombose/imunologia , Trombose/sangue , Animais , Inflamação/imunologia , SARS-CoV-2/imunologia , Plaquetas/imunologia , Plaquetas/metabolismo , Alarminas/metabolismo , Alarminas/imunologia
4.
Blood Adv ; 8(10): 2499-2508, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507683

RESUMO

ABSTRACT: Microclots have been associated with various conditions, including postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. They have been postulated to be amyloid-fibrin(ogen) aggregates, but their role as a prognostic biomarker remains unclear. To examine their possible clinical utility, blood samples were collected for the first 96 hours from critically ill patients (n = 104) admitted to the intensive care unit (ICU). Detection was by staining platelet-poor plasma samples with thioflavin T and visualized by fluorescent microscopy. Image J software was trained to identify and quantify microclots, which were detected in 44 patients (42.3%) on ICU admission but not in the remaining 60 (57.7%) or the 20 healthy controls (0.0%). Microclots on admission to ICU were associated with a primary diagnosis of sepsis (microclots present in sepsis, 23/44 [52.3%] vs microclots absent in sepsis, 19/60 [31.7%]; P = .044). Multicolor immunofluorescence demonstrated that microclots consisted of amyloid-fibrinogen aggregates, which was supported by proteomic analysis. Patients with either a high number or larger-sized microclots had a higher likelihood of developing disseminated intravascular coagulation (odds ratio [OR], 51.4; 95% confidence interval [CI], 6.3-6721.1; P < .001) and had an increased probability of 28-day mortality (OR, 5.3; 95% CI, 2.0-15.6; P < .001). This study concludes that microclots, as defined by amyloid-fibrin(ogen) aggregates, are potentially useful in identifying sepsis and predicting adverse coagulopathic and clinical outcomes.


Assuntos
Amiloide , COVID-19 , Coagulação Intravascular Disseminada , Fibrinogênio , Humanos , Coagulação Intravascular Disseminada/sangue , Coagulação Intravascular Disseminada/mortalidade , Coagulação Intravascular Disseminada/etiologia , Coagulação Intravascular Disseminada/diagnóstico , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Amiloide/metabolismo , Fibrinogênio/análise , Fibrinogênio/metabolismo , COVID-19/sangue , COVID-19/mortalidade , COVID-19/complicações , Sepse/mortalidade , Sepse/sangue , Prognóstico , SARS-CoV-2/isolamento & purificação , Biomarcadores , Agregados Proteicos , Estado Terminal
5.
J Thromb Haemost ; 22(4): 1145-1153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103733

RESUMO

BACKGROUND: Adenoviral vector-based COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) is rare but carries significant risks of mortality and long-term morbidity. The underlying pathophysiology of severe disease is still not fully understood. The objectives were to explore the pathophysiological profile and examine for clinically informative biomarkers in patients with severe VITT. METHODS: Twenty-two hospitalized patients with VITT, 9 pre- and 21 post-ChAdOx1 vaccine controls, were recruited across England, United Kingdom. Admission blood samples were analyzed for cytokine profiles, cell death markers (lactate dehydrogenase and circulating histones), neutrophil extracellular traps, and coagulation parameters. Tissue specimens from deceased patients were analyzed. RESULTS: There were strong immune responses characterized by significant elevations in proinflammatory cytokines and T helper 1 and 2 cell activation in patients with VITT. Markers of systemic endothelial activation and coagulation activation in both circulation and organ sections were also significantly elevated. About 70% (n = 15/22) of patients met the International Society for Thrombosis and Haemostasis criteria for disseminated intravascular coagulation despite negligible changes in the prothrombin time. The increased neutrophil extracellular trap formation, in conjunction with marked lymphopenia, elevated lactate dehydrogenase, and circulating histone levels, indicates systemic immune cell injury or death. Both lymphopenia and circulating histone levels independently predicted 28-day mortality in patients with VITT. CONCLUSION: The coupling of systemic cell damage and death with strong immune-inflammatory and coagulant responses are pathophysiologically dominant and clinically relevant in severe VITT.


Assuntos
Linfopenia , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Vacinas , Humanos , Histonas , Vacinas contra COVID-19/efeitos adversos , Lactato Desidrogenases
6.
NPJ Vaccines ; 9(1): 99, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839821

RESUMO

Vaccination has proven to be a valuable tool to combat SARS-CoV-2. However, reports of rare adverse reactions such as thrombosis/thrombocytopenia syndrome after ChAdOx1 nCoV-19 vaccination have caused scientific, public and media concern. ChAdOx1 was vectorised from the Y25 chimpanzee adenovirus, which was selected due to low human seroprevalence to circumvent pre-existing immunity. In this study, we aimed to explore patterns of T-cell activation after SARS-CoV-2 COVID-19 vaccine exposure in vitro using PBMCs collected from pre-pandemic ChAdOx1 nCoV-19 naïve healthy donors (HDs), and ChAdOx1 nCoV-19 and Pfizer vaccinated controls. PBMCs were assessed for T-cell proliferation using the lymphocyte transformation test (LTT) following exposure to SARS-CoV-2 COVID-19 vaccines. Cytokine analysis was performed via intracellular cytokine staining, ELISpot assay and LEGENDplex immunoassays. T-cell assays performed in pre-pandemic vaccine naïve HDs, revealed widespread lymphocyte stimulation after exposure to ChAdOx1 nCoV-19 (95%), ChAdOx-spike (90%) and the Ad26.COV2. S vaccine, but not on exposure to the BNT162b2 vaccine. ICS analysis demonstrated that CD4+ CD45RO+ memory T-cells are activated by ChAdOx1 nCoV-19 in vaccine naïve HDs. Cytometric immunoassays showed ChAdOx1 nCoV-19 exposure was associated with the release of proinflammatory and cytotoxic molecules, such as IFN-γ, IL-6, perforin, granzyme B and FasL. These studies demonstrate a ubiquitous T-cell response to ChAdOx1 nCoV-19 and Ad26.COV2. S in HDs recruited prior to the SARS-CoV-2 pandemic, with T-cell stimulation also identified in vaccinated controls. This may be due to underlying T-cell cross-reactivity with prevalent human adenoviruses and further study will be needed to identify T-cell epitopes involved.

7.
J Thromb Haemost ; 22(8): 2247-2260, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777257

RESUMO

BACKGROUND: Circulating histones are released by extensive tissue injury or cell death and play important pathogenic roles in critical illnesses. Their interaction with circulating plasma components and the potential roles in the clinical setting are not fully understood. OBJECTIVES: We aimed to characterize the interaction of histones with fibrinogen and explore its roles in vitro, in vivo, and in patient samples. METHODS: Histone-fibrinogen binding was assessed by electrophoresis and enzyme-linked immunosorbent assay-based affinity assay. Functional significance was explored using washed platelets and endothelial cells in vitro and histone-infusion mouse models in vivo. To determine clinical translatability, a retrospective single-center cohort study was conducted on patients requiring intensive care admission (n = 199) and validated in a cohort of hospitalized patients with COVID-19 (n = 69). RESULTS: Fibrinogen binds histones through its D-domain with high affinity (calf thymus histones, KD = 18.0 ± 5.6 nM; histone 3, KD = 2.7 ± 0.8 nM; and histone 4, KD = 2.0 ± 0.7 nM) and significantly reduces histone-induced endothelial damage and platelet aggregation in vitro and in vivo in a histone-infusion mouse model. Physiologic concentrations of fibrinogen can neutralize low levels of circulating histones and increase the cytotoxicity threshold of histones to 50 µg/mL. In a cohort of patients requiring intensive care, a histone:fibrinogen ratio of ≥6 on admission was associated with moderate-severe thrombocytopenia and independently predicted mortality. This finding was validated in a cohort of hospitalized patients with COVID-19. CONCLUSION: Fibrinogen buffers the cytotoxic properties of circulating histones. Detection and monitoring of circulating histones and histone:fibrinogen ratios will help identify critically ill patients at highest risk of adverse outcomes who might benefit from antihistone therapy.


Assuntos
COVID-19 , Fibrinogênio , Histonas , Ligação Proteica , Humanos , Fibrinogênio/metabolismo , Histonas/sangue , Histonas/metabolismo , COVID-19/sangue , Animais , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Plaquetas/metabolismo , SARS-CoV-2 , Células Endoteliais/metabolismo , Adulto
8.
Artigo em Inglês | MEDLINE | ID: mdl-39038563

RESUMO

BACKGROUND: By causing inflammation and tissue damage, neutrophil extracellular traps (NETs) constitute an underlying mechanism of aspiration-induced lung injury, a major factor of the low utilization of donor lungs in lung transplantation (LTx). METHODS: To determine whether NET removal during ex vivo lung perfusion (EVLP) can restore lung function and morphology in aspiration-damaged lungs, gastric aspiration lung injury was induced in 12 pigs. After confirmation of acute respiratory distress syndrome, the lungs were explanted and assigned to NET removal connected to EVLP (treated) (n = 6) or EVLP only (nontreated) (n = 6). Hemodynamic measurements were taken, and blood and tissue samples were collected to assess lung function, morphology, levels of cell-free DNA, extracellular histones, and nucleosomes as markers of NETs, as well as cytokine levels. RESULTS: After EVLP and NET removal in porcine lungs, PaO2/FiO2 ratios increased significantly compared to those undergoing EVLP alone (p = 0.0411). Treated lungs had lower cell-free DNA (p = 0.0260) and lower levels of extracellular histones in EVLP perfusate (p= 0.0260) than nontreated lungs. According to histopathology, treated lungs showed less immune cell infiltration and less edema compared with nontreated lungs, which was reflected in decreased levels of proinflammatory cytokines in EVLP perfusate and bronchoalveolar lavage fluid. CONCLUSIONS: To conclude, removing NETs during EVLP improved lung function and morphology in aspiration-damaged donor lungs. The ability to remove NETs during EVLP could represent a new therapeutic approach for LTx and potentially expand the donor pool for transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA