Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Ther ; 29(11): 3258-3273, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33974998

RESUMO

Dysregulated adenosine-to-inosine (A-to-I) RNA editing is implicated in various cancers. However, no available RNA editing inhibitors have so far been developed to inhibit cancer-associated RNA editing events. Here, we decipher the RNA secondary structure of antizyme inhibitor 1 (AZIN1), one of the best-studied A-to-I editing targets in cancer, by locating its editing site complementary sequence (ECS) at the 3' end of exon 12. Chemically modified antisense oligonucleotides (ASOs) that target the editing region of AZIN1 caused a substantial exon 11 skipping, whereas ECS-targeting ASOs effectively abolished AZIN1 editing without affecting splicing and translation. We demonstrate that complete 2'-O-methyl (2'-O-Me) sugar ring modification in combination with partial phosphorothioate (PS) backbone modification may be an optimal chemistry for editing inhibition. ASO3.2, which targets the ECS, specifically inhibits cancer cell viability in vitro and tumor incidence and growth in xenograft models. Our results demonstrate that this AZIN1-targeting, ASO-based therapeutics may be applicable to a wide range of tumor types.


Assuntos
Proteínas de Transporte/genética , Marcação de Genes , Edição de RNA , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Modelos Animais de Doenças , Éxons , Regulação Neoplásica da Expressão Gênica , Marcação de Genes/métodos , Terapia Genética/métodos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/terapia , Oligonucleotídeos Antissenso/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochemistry ; 59(46): 4429-4438, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33166472

RESUMO

Minor-groove base triples formed between stem 1 and loop 2 of the simian retrovirus type 1 (SRV-1) mRNA frameshifting pseudoknot are essential in stimulating -1 ribosomal frameshifting. How tertiary base triple formation affects the local stabilities of secondary structures (stem 1 and stem 2) and thus ribosomal frameshifting efficiency is not well understood. We made a short peptide nucleic acid (PNA) that is expected to invade stem 1 of the SRV-1 pseudoknot by PNA-RNA duplex formation to mimic the stem 1 unwinding process by a translating ribosome. In addition, we used a PNA for invading stem 2 in the SRV-1 pseudoknot. Our nondenaturing polyacrylamide gel electrophoresis data for the binding of PNA to the SRV-1 pseudoknot and mutants reveal that mutations in loop 2 disrupting base triple formation between loop 2 and stem 1 in the SRV-1 pseudoknot result in enhanced invasion by both PNAs. Our data suggest that tertiary stem 1-loop 2 base triple interactions in the SRV-1 pseudoknot can stabilize both of the secondary structural components, stem 1 and stem 2. Stem 2 stability is thus coupled to the structural stability of stem 1-loop 2 base triples, mediated through a long-range effect. The apparent dissociation constants of both PNAs are positively correlated with the pseudoknot mechanical stabilities and frameshifting efficiencies. The relatively simple PNA local invasion experiment may be used to characterize the energetic contribution of tertiary interactions and ligand binding in many other RNA and DNA structures.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Vírus dos Macacos de Mason-Pfizer/genética , RNA Viral/química , Eletroforese em Gel de Poliacrilamida Nativa , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Ribossomos/genética , Ribossomos/virologia
3.
Nucleic Acids Res ; 46(15): 7506-7521, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30011039

RESUMO

Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.


Assuntos
Pareamento de Bases/genética , Halogênios/química , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , RNA de Cadeia Dupla/síntese química , Uracila/análogos & derivados , Uracila/química , Bromouracila/química , Linhagem Celular Tumoral , Biologia Computacional/métodos , Simulação por Computador , Halogenação , Células HeLa , Humanos , Ligação de Hidrogênio , Sequências Repetidas Invertidas/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/química
4.
Biochemistry ; 58(32): 3444-3453, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31318532

RESUMO

Chemically modified short peptide nucleic acids (PNAs) recognize RNA duplexes under near physiological conditions by major-groove PNA·RNA-RNA triplex formation and show great promise for the development of RNA-targeting probes and therapeutics. Thymine (T) and uracil (U) are often incorporated into PNAs to recognize A-U pairs through major-groove T·A-U and U·A-U base triple formation. Incorporation of a modified nucleobase, 2-thiouracil (s2U), into triplex-forming oligonucleotides stabilizes both DNA and RNA triplexes. Thiolation of uracil causes a decrease in the dehydration energy penalty for triplex formation as well as a decrease in the pKa of the N3 atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions, similar to the previously reported thiolation effect of pseudoisocytosine (J to L substitution). Here, we incorporated s2U into short PNAs, followed by binding studies of a series of s2U-modified PNAs. We demonstrated by nondenaturing polyacrylamide gel electrophoresis and thermal melting experiments that s2U and L incorporated into dsRNA-binding PNAs (dbPNAs) enhance the recognition of A-U and G-C pairs, respectively, in RNA duplexes in a position-independent manner, with no appreciable binding to the DNA duplex. Combining s2U and L modifications in dbPNAs facilitates enhanced recognition of dsRNAs and maintains selective binding to dsRNAs over ssRNAs. We further demonstrated through a cell-free assay the application of the s2U- and L-modified dbPNAs (8-mer, with a molecular mass of ∼2.3 kDa) in the inhibition of the pre-microRNA-198 maturation in a substrate-specific manner. Thus, s2U-modified dbPNAs may be generally useful for the enhanced and selective recognition of RNA duplexes and for the regulation of RNA functions.


Assuntos
Sequências Repetidas Invertidas , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/metabolismo , Ácido Úrico/análogos & derivados , Sequência de Bases , Ácidos Nucleicos Peptídicos/química , Ácido Úrico/metabolismo
5.
Biochemistry ; 58(10): 1319-1331, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30775913

RESUMO

Chemically modified peptide nucleic acids (PNAs) show great promise in the recognition of RNA duplexes by major-groove PNA·RNA-RNA triplex formation. Triplex formation is favored for RNA duplexes with a purine tract within one of the RNA duplex strands, and is severely destabilized if the purine tract is interrupted by pyrimidine residues. Here, we report the synthesis of a PNA monomer incorporated with an artificial nucleobase S, followed by the binding studies of a series of S-modified PNAs. Our data suggest that an S residue incorporated into short 8-mer dsRNA-binding PNAs (dbPNAs) can recognize internal Watson-Crick C-G and U-A, and wobble U-G base pairs (but not G-C, A-U, and G-U pairs) in RNA duplexes. The short S-modified PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. Interestingly, replacement of the C residue in an S·C-G triple with a 5-methyl C results in the disruption of the triplex, probably due to a steric clash between S and 5-methyl C. Previously reported PNA E base shows recognition of U-A and A-U pairs, but not a U-G pair. Thus, S-modified dbPNAs may be uniquely useful for the general recognition of RNA U-G, U-A, and C-G pairs. Shortening the succinyl linker of our PNA S monomer by one carbon atom to have a malonyl linker causes a severe destabilization of triplex formation. Our experimental and modeling data indicate that part of the succinyl moiety in a PNA S monomer may serve to expand the S base forming stacking interactions with adjacent PNA bases.


Assuntos
Ácidos Nucleicos Peptídicos/síntese química , Ácidos Nucleicos Peptídicos/fisiologia , RNA/química , Pareamento de Bases/genética , Pareamento de Bases/fisiologia , Simulação por Computador , DNA/química , Modelos Biológicos , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , RNA/metabolismo , RNA de Cadeia Dupla
6.
Anal Chem ; 91(8): 5331-5338, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30873827

RESUMO

RNAs are emerging as important biomarkers and therapeutic targets. The strategy of directly targeting double-stranded RNA (dsRNA) by triplex-formation is relatively underexplored mainly due to the weak binding at physiological conditions for the traditional triplex-forming oligonucleotides (TFOs). Compared to DNA and RNA, peptide nucleic acids (PNAs) are chemically stable and have a neutral peptide-like backbone, and thus, they show significantly enhanced binding to natural nucleic acids. We have successfully developed nucleobase-modified dsRNA-binding PNAs (dbPNAs) to facilitate structure-specific and selective recognition of dsRNA over single-stranded RNA (ssRNA) and dsDNA regions at near-physiological conditions. The triplex formation strategy facilitates the targeting of not only the sequence but also the secondary structure of RNA. Here, we report the development of novel dbPNA-based fluorescent light-up probes through the incorporation of A-U pair-recognizing 5-benzothiophene uracil (btU). The incorporation of btU into dbPNAs does not affect the binding affinity toward dsRNAs significantly, in most cases, as evidenced by our nondenaturing gel shift assay data. The blue fluorescence emission intensity of btU-modified dbPNAs is sequence- and structure-specifically enhanced by dsRNAs, including the influenza viral RNA panhandle duplex and HIV-1-1 ribosomal frameshift-inducing RNA hairpin, but not ssRNAs or DNAs, at 200 mM NaCl, pH 7.5. Thus, dbPNAs incorporating btU-modified and other further modified fluorescent nucleobases will be useful biochemical tools for probing and detecting RNA structures, interactions, and functions.


Assuntos
Fluorescência , Ácidos Nucleicos Peptídicos/química , RNA/química , Uracila/química , Sequência de Bases , Sítios de Ligação , Estrutura Molecular , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Uracila/análogos & derivados
7.
Bioconjug Chem ; 30(3): 931-943, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30721034

RESUMO

RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 µM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.


Assuntos
Orthomyxoviridae/efeitos dos fármacos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacologia , RNA de Cadeia Dupla/metabolismo , RNA Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Dicroísmo Circular , Cães , Células Madin Darby de Rim Canino , Eletroforese em Gel de Poliacrilamida Nativa , Conformação de Ácido Nucleico , Orthomyxoviridae/genética , Orthomyxoviridae/fisiologia , RNA de Cadeia Dupla/química
8.
Biochemistry ; 57(1): 149-159, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29116759

RESUMO

Minus-one programmed ribosomal frameshifting (-1 PRF) allows the precise maintenance of the ratio between viral proteins and is involved in the regulation of the half-lives of cellular mRNAs. Minus-one ribosomal frameshifting is activated by several stimulatory elements such as a heptameric slippery sequence (X XXY YYZ) and an mRNA secondary structure (hairpin or pseudoknot) that is positioned 2-8 nucleotides downstream from the slippery site. Upon -1 RF, the ribosomal reading frame is shifted from the normal zero frame to the -1 frame with the heptameric slippery sequence decoded as XXX YYY Z instead of X XXY YYZ. Our research group has developed chemically modified peptide nucleic acid (PNA) L and Q monomers to recognize G-C and C-G Watson-Crick base pairs, respectively, through major-groove parallel PNA·RNA-RNA triplex formation. L- and Q-incorporated PNAs show selective binding to double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). The sequence specificity and structural selectivity of L- and Q-modified PNAs may allow the precise targeting of desired viral and cellular RNA structures, and thus may serve as valuable biological tools for mechanistic studies and potential therapeutics for fighting diseases. Here, for the first time, we demonstrate by cell-free in vitro translation assays using rabbit reticulocyte lysate that the dsRNA-specific chemically modified PNAs targeting model mRNA hairpins stimulate -1 RF (from 2% to 32%). An unmodified control PNA, however, shows nonspecific inhibition of translation. Our results suggest that the modified dsRNA-binding PNAs may be advantageous for targeting structured RNAs.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Ácidos Nucleicos Peptídicos/farmacologia , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Sistema Livre de Células , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , Biossíntese de Proteínas , Coelhos
9.
Nucleic Acids Res ; 44(19): 9071-9082, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27596599

RESUMO

RNA duplex regions are often involved in tertiary interactions and protein binding and thus there is great potential in developing ligands that sequence-specifically bind to RNA duplexes. We have developed a convenient synthesis method for a modified peptide nucleic acid (PNA) monomer with a guanidine-modified 5-methyl cytosine base. We demonstrated by gel electrophoresis, fluorescence and thermal melting experiments that short PNAs incorporating the modified residue show high binding affinity and sequence specificity in the recognition of an RNA duplex containing an internal inverted Watson-Crick C-G base pair. Remarkably, the relatively short PNAs show no appreciable binding to DNA duplexes or single-stranded RNAs. The attached guanidine group stabilizes the base triple through hydrogen bonding with the G base in a C-G pair. Selective binding towards an RNA duplex over a single-stranded RNA can be rationalized by the fact that alkylation of the amine of a 5-methyl C base blocks the Watson-Crick edge. PNAs incorporating multiple guanidine-modified cytosine residues are able to enter HeLa cells without any transfection agent.


Assuntos
Pareamento de Bases , Citosina/química , Guanidina/química , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , RNA/química , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ácidos Nucleicos Peptídicos/metabolismo , Purinas , Pirimidinas , Sais , Termodinâmica
10.
Bioconjug Chem ; 25(8): 1412-20, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25055196

RESUMO

In order to overcome poor cell permeability of antisense peptide nucleic acid (PNA), a fluorescent mesoporous silica nanoparticle (MSNP) carrier was developed to successfully deliver antisense PNA into cancer cells for effective silence of B-cell lymphoma 2 (Bcl-2) protein expression in vitro. First, fluorescent MSNP functionalized with disulfide bond bridged groups was fabricated and characterized. Antisense and negative control PNAs were synthesized and further conjugated with fluorescent dye cyanine 5. Then, the PNAs were covalently connected with fluorescent MSNP via amidation between amino group of PNAs and carboxylic acid group on the MSNP surface. High intracellular concentration of glutathione serves as a natural reducing agent, which could cleave the disulfide bond to trigger the PNA release in vitro. Confocal laser scanning microscopy studies prove that PNA conjugated MSNP was endocytosed by HeLa cancer cells, and redox-controlled intracellular release of antisense PNA from fluorescent MSNP was successfully achieved. Finally, effective silencing of the Bcl-2 protein expression induced by the delivered antisense PNA into HeLa cells was confirmed by Western blot assay.


Assuntos
Portadores de Fármacos/química , Corantes Fluorescentes/química , Espaço Intracelular/metabolismo , Nanopartículas/química , Oligonucleotídeos Antissenso/química , Ácidos Nucleicos Peptídicos/química , Dióxido de Silício/química , Sequência de Bases , Citoplasma/metabolismo , Inativação Gênica , Células HeLa , Humanos , Oligonucleotídeos Antissenso/genética , Ácidos Nucleicos Peptídicos/genética , Porosidade , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética
11.
Front Cardiovasc Med ; 10: 1248468, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674806

RESUMO

Background: Diffuse interstitial myocardial fibrosis is a key common pathological manifestation in hypertensive heart disease (HHD) progressing to heart failure (HF). Angiotensin receptor-neprilysin inhibitors (ARNi), now a front-line treatment for HF, confer benefits independent of blood pressure, signifying a multifactorial mode of action beyond hemodynamic regulation. We aim to test the hypothesis that compared with angiotensin II receptor blockade (ARB) alone, ARNi is more effective in regressing diffuse interstitial myocardial fibrosis in HHD. Methods: Role of ARNi in Ventricular Remodeling in Hypertensive LVH (REVERSE-LVH) is a prospective, randomized, open-label, blinded endpoint (PROBE) clinical trial. Adults with hypertension and left ventricular hypertrophy (LVH) according to Asian sex- and age-specific thresholds on cardiovascular magnetic resonance (CMR) imaging are randomized to treatment with either sacubitril/valsartan (an ARNi) or valsartan (an ARB) in 1:1 ratio for a duration of 52 weeks, at the end of which a repeat CMR is performed to assess differential changes from baseline between the two groups. The primary endpoint is the change in CMR-derived diffuse interstitial fibrosis volume. Secondary endpoints include changes in CMR-derived left ventricular mass, volumes, and functional parameters. Serum samples are collected and stored to assess the effects of ARNi, compared with ARB, on circulating biomarkers of cardiac remodeling. The endpoints will be analyzed with reference to the corresponding baseline parameters to evaluate the therapeutic effect of sacubitril/valsartan vs. valsartan. Discussion: REVERSE-LVH will examine the anti-fibrotic potential of sacubitril/valsartan and will offer mechanistic insights into the clinical benefits of sacubitril/valsartan in hypertension in relation to cardiac remodeling. Advancing the knowledge of the pathophysiology of HHD will consolidate effective risk stratification and personalized treatment through a multimodal manner integrating complementary CMR and biomarkers into the conventional care approach.Clinical Trial Registration: ClinicalTrials.gov, identifier, NCT03553810.

12.
Circ Cardiovasc Imaging ; 16(7): 545-553, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37431660

RESUMO

BACKGROUND: Compared with patients with hypertension only, those with hypertension and diabetes (HTN/DM) have worse prognosis. We aimed to characterize morphological differences between hypertension and HTN/DM using cardiovascular magnetic resonance; and compare differentially expressed proteins associated with myocardial fibrosis using high throughput multiplex assays. METHODS: Asymptomatic patients underwent cardiovascular magnetic resonance: 438 patients with hypertension (60±8 years; 59% males) and 167 age- and sex-matched patients with HTN/DM (60±10 years; 64% males). Replacement myocardial fibrosis was defined as nonischemic late gadolinium enhancement on cardiovascular magnetic resonance. Extracellular volume fraction was used as a marker of diffuse myocardial fibrosis. A total of 184 serum proteins (Olink Target Cardiovascular Disease II and III panels) were measured to identify unique signatures associated with myocardial fibrosis in all patients. RESULTS: Despite similar left ventricular mass (P=0.344) and systolic blood pressure (P=0.086), patients with HTN/DM had increased concentricity and worse multidirectional strain (P<0.001 for comparison of all strain measures) compared to hypertension only. Replacement myocardial fibrosis was present in 28% of patients with HTN/DM compared to 16% of those with hypertension (P<0.001). NT-proBNP (N-terminal pro-B-type natriuretic peptide) was the only protein differentially upregulated in hypertension patients with replacement myocardial fibrosis and independently associated with extracellular volume. In patients with HTN/DM, GDF-15 (growth differentiation factor 15) was independently associated with replacement myocardial fibrosis and extracellular volume. Ingenuity Pathway Analysis demonstrated a strong association between increased inflammatory response/immune cell trafficking and myocardial fibrosis in patients with HTN/DM. CONCLUSIONS: Adverse cardiac remodeling was observed in patients with HTN/DM. The novel proteomic signatures and associated biological activities of increased immune and inflammatory response may partly explain these observations.


Assuntos
Cardiomiopatias , Diabetes Mellitus , Hipertensão , Masculino , Humanos , Feminino , Meios de Contraste , Proteômica , Função Ventricular Esquerda/fisiologia , Gadolínio , Hipertensão/diagnóstico , Cardiomiopatias/complicações , Fibrose
13.
J Am Heart Assoc ; 11(6): e024226, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35253475

RESUMO

Background This study examined the associations between quantitative optical coherence tomography angiography (OCTA) parameters and myocardial abnormalities as documented on cardiovascular magnetic resonance imaging in patients with systemic hypertension. Methods and Results We conducted a cross-sectional study of 118 adults with hypertension (197 eyes). Patients underwent cardiovascular magnetic resonance imaging and OCTA (PLEX Elite 9000, Carl Zeiss Meditec). Associations between OCTA parameters (superficial and deep retinal capillary density) and adverse cardiac remodeling (left ventricular mass, remodeling index, interstitial fibrosis, global longitudinal strain, and presence of left ventricular hypertrophy) were studied using multivariable linear regression analysis with generalized estimating equations. Of the 118 patients with hypertension enrolled (65% men; median [interquartile range] age, 59 [13] years), 29% had left ventricular hypertrophy. After adjusting for age, sex, systolic blood pressure, diabetes, and signal strength of OCTA scans, patients with lower superficial capillary density had significantly higher left ventricular mass (ß=-0.150; 95% CI, -0.290 to -0.010), higher interstitial volume (ß=-0.270; 95% CI, -0.535 to -0.0015), and worse global longitudinal strain (ß=-0.109; 95% CI, -0.187 to -0.032). Lower superficial capillary density was found in patients with hypertension with replacement fibrosis versus no replacement fibrosis (16.53±0.64 mm-1 versus 16.96±0.64 mm-1; P=0.003). Conclusions We showed significant correlations between retinal capillary density and adverse cardiac remodeling markers in patients with hypertension, supporting the notion that the OCTA could provide a non-invasive index of microcirculation alteration for vascular risk stratification in people with hypertension.


Assuntos
Hipertensão , Hipertrofia Ventricular Esquerda , Adulto , Estudos Transversais , Feminino , Fibrose , Angiofluoresceinografia/métodos , Humanos , Hipertensão/complicações , Hipertensão/patologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/patologia , Masculino , Pessoa de Meia-Idade , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Tomografia de Coerência Óptica/métodos , Remodelação Ventricular
14.
Hypertension ; 79(8): 1804-1813, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35603595

RESUMO

BACKGROUND: The prognostic significance of focal and diffuse myocardial fibrosis in patients with cardiovascular risk factors is unclear. METHODS: REMODEL (Response of the Myocardium to Hypertrophic Conditions in the Adult Population) is an observational cohort of asymptomatic patients with essential hypertension. All participants underwent cardiovascular magnetic resonance to assess for myocardial fibrosis: nonischemic late gadolinium enhancement (LGE), native myocardial T1, postcontrast myocardial T1, extracellular volume fraction including/excluding LGE regions, interstitial volume (extracellular volume×myocardial volume), and interstitial/myocyte ratio. Primary outcome was a composite of first occurrence acute coronary syndrome, heart failure hospitalization, strokes, and cardiovascular mortality. Patients were recruited from February 2016 and followed until June 2021. RESULTS: Of the 786 patients with hypertension (58±11 years; 39% women; systolic blood pressure, 130±14 mm Hg), 145 (18%) had nonischemic LGE. Patients with nonischemic LGE were more likely to be men, have diabetes, be current smokers, and have higher blood pressure (P<0.05 for all). Compared with those without LGE, patients with nonischemic LGE had greater left ventricular mass (66±22 versus 49±9 g/m2; P<0.001), worse multidirectional strain (P<0.001 for all measures), and elevated circulating markers of myocardial wall stress and myocardial injury, adjusted for potential confounders. Twenty-four patients had primary outcome over 39 (30-50) months of follow-up. Of all the cardiovascular magnetic resonance markers of myocardial fibrosis assessed, only nonischemic LGE (hazard ratio, 6.69 [95% CI, 2.54-17.60]; P<0.001) and indexed interstitial volume (hazard ratio, 1.11 [95% CI, 1.04-1.19]; P=0.002) demonstrated independent association with primary outcome. CONCLUSIONS: In patients with hypertension, myocardial fibrosis on cardiovascular magnetic resonance is associated with adverse cardiac remodeling and outcomes.


Assuntos
Cardiomiopatias , Hipertensão , Adulto , Meios de Contraste , Feminino , Fibrose , Gadolínio , Humanos , Hipertensão/complicações , Hipertensão/patologia , Imagem Cinética por Ressonância Magnética , Masculino , Miocárdio/patologia , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Volume Sistólico , Remodelação Ventricular
15.
Front Cardiovasc Med ; 8: 816985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35242820

RESUMO

BACKGROUND: The quantitative measures used to assess the performance of automated methods often do not reflect the clinical acceptability of contouring. A quality-based assessment of automated cardiac magnetic resonance (CMR) segmentation more relevant to clinical practice is therefore needed. OBJECTIVE: We propose a new method for assessing the quality of machine learning (ML) outputs. We evaluate the clinical utility of the proposed method as it is employed to systematically analyse the quality of an automated contouring algorithm. METHODS: A dataset of short-axis (SAX) cine CMR images from a clinically heterogeneous population (n = 217) were manually contoured by a team of experienced investigators. On the same images we derived automated contours using a ML algorithm. A contour quality scoring application randomly presented manual and automated contours to four blinded clinicians, who were asked to assign a quality score from a predefined rubric. Firstly, we analyzed the distribution of quality scores between the two contouring methods across all clinicians. Secondly, we analyzed the interobserver reliability between the raters. Finally, we examined whether there was a variation in scores based on the type of contour, SAX slice level, and underlying disease. RESULTS: The overall distribution of scores between the two methods was significantly different, with automated contours scoring better than the manual (OR (95% CI) = 1.17 (1.07-1.28), p = 0.001; n = 9401). There was substantial scoring agreement between raters for each contouring method independently, albeit it was significantly better for automated segmentation (automated: AC2 = 0.940, 95% CI, 0.937-0.943 vs manual: AC2 = 0.934, 95% CI, 0.931-0.937; p = 0.006). Next, the analysis of quality scores based on different factors was performed. Our approach helped identify trends patterns of lower segmentation quality as observed for left ventricle epicardial and basal contours with both methods. Similarly, significant differences in quality between the two methods were also found in dilated cardiomyopathy and hypertension. CONCLUSIONS: Our results confirm the ability of our systematic scoring analysis to determine the clinical acceptability of automated contours. This approach focused on the contours' clinical utility could ultimately improve clinicians' confidence in artificial intelligence and its acceptability in the clinical workflow.

16.
JACC Asia ; 1(2): 218-226, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36338161

RESUMO

Background: Hypertrophic cardiomyopathy (HCM) is defined as left ventricular end-diastolic maximal wall thickness (WTMax) ≥15.0 mm, without accounting for ethnicity, sex, and body size. It is well-established that Asians have smaller hearts than do Caucasians. Objectives: This study aims to examine the implications of this single absolute WTMax threshold on the diagnosis of HCM in Asians. Methods: The study consisted of 360 healthy volunteers (male: n = 174; age: 50 ± 12 years) and 114 genetically characterized patients with HCM (male: n = 83; age: 52 ± 13 years; genotype-positive, n = 39). All participants underwent cardiovascular magnetic resonance. WTMax was measured semiautomatically at end-diastole according to the standard 16 myocardial segments. Results: Healthy male volunteers had increased WTMax compared with that of female volunteers (8.4 ± 1.2 mm vs 6.6 ± 1.1 mm, respectively; P < 0.001). Conversely, WTMax was similar between male and female patients with HCM (15.2 ± 3.4 mm vs 14.7 ± 3.0 mm, respectively; P = 0.484) and between those with and without a pathogenic gene variant (P = 0.828). Using the recommended diagnostic threshold of 15.0 mm, 56 patients with HCM had WTMax <15.0 mm and no healthy volunteers had WTMax >15.0 mm (specificity of 100% and sensitivity of 51%). Lowering WTMax thresholds to 10.0 mm in female patients and 12.0 mm in male patients did not affect specificity (100%) but significantly improved sensitivity (84%). Despite lower left ventricular mass, female patients with HCM demonstrated more features of adverse cardiac remodeling than did male patients: increased myocardial fibrosis, higher asymmetric ratio, and disproportionately worse myocardial strain. Conclusions: The study highlights cautious application of guideline-recommended WTMax to diagnose HCM in Asians. Lowering WTMax to account for ethnicity and sex improves diagnostic sensitivity without compromising specificity.

17.
Front Cardiovasc Med ; 8: 750016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859068

RESUMO

Aims: Left ventricular ejection fraction is the conventional measure used to guide heart failure management, regardless of underlying etiology. Left ventricular global longitudinal strain (LV-GLS) by speckle tracking echocardiography (STE) is a more sensitive measure of intrinsic myocardial function. We aim to establish LV-GLS as a marker of replacement myocardial fibrosis on cardiovascular magnetic resonance (CMR) and validate the prognostic value of LV-GLS thresholds associated with fibrosis. Methods and results: LV-GLS thresholds of replacement fibrosis were established in the derivation cohort: 151 patients (57 ± 10 years; 58% males) with hypertension who underwent STE to measure LV-GLS and CMR. Prognostic value of the thresholds was validated in a separate outcome cohort: 261 patients with moderate-severe aortic stenosis (AS; 71 ± 12 years; 58% males; NYHA functional class I-II) and preserved LVEF ≥50%. Primary outcome was a composite of cardiovascular mortality, heart failure hospitalization, and myocardial infarction. In the derivation cohort, LV-GLS demonstrated good discrimination (c-statistics 0.74 [0.66-0.83]; P < 0.001) and calibration (Hosmer-Lemeshow χ2 = 6.37; P = 0.605) for replacement fibrosis. In the outcome cohort, 47 events occurred over 16 [3.3, 42.2] months. Patients with LV-GLS > -15.0% (corresponding to 95% specificity to rule-in myocardial fibrosis) had the worst outcomes compared to patients with LV-GLS < -21.0% (corresponding to 95% sensitivity to rule-out myocardial fibrosis) and those between -21.0 and -15.0% (log-rank P < 0.001). LV-GLS offered independent prognostic value over clinical variables, AS severity and echocardiographic LV mass and E/e'. Conclusion: LV-GLS thresholds associated with replacement myocardial fibrosis is a novel approach to risk-stratify patients with AS and preserved LVEF.

18.
J Am Heart Assoc ; 9(4): e014781, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32067597

RESUMO

Background Increased left ventricular (LV) mass is characterized by increased myocardial wall thickness and/or ventricular dilatation that is associated with worse outcomes. We aim to comprehensively compare sex-stratified associations between measures of LV remodeling and increasing LV mass in the general population. Methods and Results Participants were prospectively recruited in the National Heart Center Singapore Biobank to examine health and cardiovascular risk factors in the general population. Cardiovascular magnetic resonance was performed in all individuals. Participants with established cardiovascular diseases and abnormal cardiovascular magnetic resonance scan results were excluded. Global and regional measures of LV remodeling (geometry, function, interstitial volumes, and wall stress) were performed using conventional image analysis and novel 3-dimensional machine learning phenotyping. Sex-stratified analyses were performed in 1005 participants (57% males; 53±13 years). Age and prevalence of cardiovascular risk factors were well-matched in both sexes (P>0.05 for all). Progressive increase in LV mass was associated with increased concentricity in either sex, but to a greater extent in females. Compared with males, females had higher wall stress (mean difference: 170 mm Hg, P<0.0001) despite smaller LV mass (42.4±8.2 versus 55.6±14.2 g/m2, P<0.0001), lower blood pressures (P<0.0001), and higher LV ejection fraction (61.9±5.9% versus 58.6±6.4%, P<0.0001). The regions of increased concentric remodeling corresponded to regions of increased wall stress. Compared with males, females had increased extracellular volume fraction (27.1±2.4% versus 25.1±2.9%, P<0.0001). Conclusions Compared with males, females have lower LV mass, increased wall stress, and concentric remodeling. These findings provide mechanistic insights that females are susceptible to particular cardiovascular complications.


Assuntos
Hipertrofia Ventricular Esquerda/epidemiologia , Estresse Fisiológico/fisiologia , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular/fisiologia , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Fatores Sexuais , Singapura
19.
J Vis Exp ; (127)2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28994801

RESUMO

RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.


Assuntos
Ácidos Nucleicos Peptídicos/genética , RNA de Cadeia Dupla/genética , Ácidos Nucleicos Peptídicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Relação Estrutura-Atividade
20.
Wiley Interdiscip Rev RNA ; 6(1): 111-28, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25146348

RESUMO

The diverse biological functions of RNA are determined by the complex structures of RNA stabilized by both secondary and tertiary interactions. An RNA triplex is an important tertiary structure motif that is found in many pseudoknots and other structured RNAs. A triplex structure usually forms through tertiary interactions in the major or minor groove of a Watson-Crick base-paired stem. A major-groove RNA triplex structure is stable in isolation by forming consecutive major-groove base triples such as U·A-U and C(+) ·G-C. Minor-groove RNA triplexes, e.g., A-minor motif triplexes, are found in almost all large structured RNAs. As double-stranded RNA stem regions are often involved in biologically important tertiary triplex structure formation and protein binding, the ability to sequence specifically target any desired RNA duplexes by triplex formation would have great potential for biomedical applications. Programmable chemically modified triplex-forming oligonucleotides (TFOs) and triplex-forming peptide nucleic acids (PNAs) have been developed to form TFO·RNA2 and PNA·RNA2 triplexes, respectively, with enhanced binding affinity and sequence specificity at physiological conditions. Here, we (1) provide an overview of naturally occurring RNA triplexes, (2) summarize the experimental methods for studying triplexes, and (3) review the development of TFOs and triplex-forming PNAs for targeting an HIV-1 ribosomal frameshift-inducing RNA, a bacterial ribosomal A-site RNA, and a human microRNA hairpin precursor, and for inhibiting the RNA-protein interactions involving human RNA-dependent protein kinase and HIV-1 viral protein Rev.


Assuntos
Substâncias Macromoleculares , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Pareamento de Bases , Regulação da Expressão Gênica , Humanos , Biologia Molecular/métodos , Técnicas de Diagnóstico Molecular/métodos , RNA de Cadeia Dupla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA