Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202408284, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979690

RESUMO

We study by femtosecond infrared spectroscopy the ultrafast and persistent photoinduced phase transition of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98∙0.2H2O material, induced at room temperature by a single laser shot. This system exhibits a charge-transfer based phase transition with a 75 K wide thermal hysteresis, centred at room temperature, from the low temperature Mn3+-N-C-Fe2+ tetragonal phase to the high temperature Mn2+-N-C-Fe3+ cubic phase. At room temperature, the photoinduced phase transition is persistent. However, the out-of-equilibrium dynamics leading to this phase is multi-scale. Femtosecond infrared spectroscopy, particularly sensitive to local reorganizations through the evolution of the frequency of the N-C vibration modes with the different characteristic electronic states, reveals that at low laser fluence and on short time scale, the photoexcitation of the Mn3+-N-C-Fe2+ phase creates small charge-transfer polarons [Mn2+-N-C-Fe3+]* within ≃ 250 fs. The local trapping of photoinduced intermetallic charge-transfer is characterized by the appearance of a polaronic infrared band, due to the surrounding Mn2+-N-C-Fe2+ species. Above a threshold fluence, when a critical fraction of small CT-polarons is reached, the macroscopic phase transition to the persistent Mn2+-N-C-Fe3+ cubic phase occurs within ≃ 100 ps. This non-linear photo-response results from elastic cooperativity, intrinsic to a switchable lattice and reminiscent of a feedback mechanism.

2.
J Am Chem Soc ; 145(42): 22934-22944, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824191

RESUMO

Knowledge of the magnetic domain is indispensable for understanding the magnetostatic properties of magnets. However, to date, the magnetic domain has not yet been reported in the field of molecule-based magnets. Herein, we study the magnetic domains of molecule-based magnets. Two magnetic films of iron/chromium hexacyanidochromate FexCr1-x[Cr(CN)6]2/3·5H2O (x = 0; Film 1 and x = 0.2; Film 2) were prepared for investigation. The temperature evolution of surface magnetization was measured using magnetic force microscopy. Film 1 showed a magnetic domain below Curie temperature (TC) and its positive-magnetic polarization increased monotonously with decreasing temperature, while Film 2 showed positive magnetic polarization below TC and switches from positive to negative magnetization through a demagnetization state at 146 K. This study originally reports the temperature variation of the magnetization state at the magnetization reversal. The magnetic domains appeared as a maze pattern with an approximate domain size of one-to-several micrometers. This work shows that research on molecule-based magnets can be expanded from magnetochemistry to the magnetostatic engineering of bulk magnets, molecule-based magnetostatic engineering.

3.
Angew Chem Int Ed Engl ; 62(35): e202306372, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37335298

RESUMO

A conjunction of Single-Molecule Magnet (SMM) behavior and luminescence thermometry is an emerging research line aiming at contactless read-out of temperature in future SMM-based devices. The shared working range between slow magnetic relaxation and the thermometric response is typically narrow or absent. We report TbIII -based emissive SMMs formed in a cyanido-bridged framework whose properties are governed by the reversible structural transformation from [TbIII (H2 O)2 ][CoIII (CN)6 ] ⋅ 2.7H2 O (1) to its dehydrated phase, TbIII [CoIII (CN)6 ] (2). The 8-coordinated complexes in 1 show the moderate SMM effect but it is enhanced for trigonal-prismatic TbIII complexes in 2, showing the SMM features up to 42 K. They are governed by the combination of QTM, Raman, and Orbach relaxation with the energy barrier of 594(18) cm-1 (854(26) K), one of the highest among the TbIII -based molecular nanomagnets. Both systems exhibit emission related to the f-f electronic transitions, with the temperature variations resulting in the optical thermometry below 100 K. The dehydration leads to a wide temperature overlap between the SMM behavior and thermometry, from 6 K to 42 K. These functionalities are further enriched after the magnetic dilution. The role of post-synthetic formation of high-symmetry TbIII complexes in achieving the SMM effect and hot-bands-based optical thermometry is discussed.

4.
Angew Chem Int Ed Engl ; 60(43): 23267-23273, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34288315

RESUMO

We study by femtosecond optical pump-probe spectroscopy the photoinduced charge transfer (CT) in the RbMnFe Prussian blue analogue. Previous studies evidenced the local nature of the photoinduced MnIII FeII → MnII FeIII process, occurring within less than 1 ps. Here we show experimentally that two photoswitching pathways exist, depending on the excitation pump wavelength, which is confirmed by band structure calculations. Photoexcitation of α spins corresponds to the Mn(d-d) band, which drives reverse Jahn-Teller distortion through the population of antibonding Mn-N orbitals, and induces CT within ≈190 fs. The process launches coherent lattice torsion during the self-trapping of the CT small-polaron. Photoexcitation of ß spins drives intervalence Fe→Mn CT towards non-bonding states and results in a slower dynamic.

5.
J Am Chem Soc ; 139(38): 13268-13271, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28901752

RESUMO

Magnetic ferrites are stable, sustainable, and economical. Consequently, they have been used in various fields. The development of large coercive field (large Hc) magnetic ferrites is a very important but challenging issue to accelerate the spread of use and to expand practical applications. In this study, we prepared a rhodium-substituted ε-iron oxide film and observed a remarkably large Hc value of 35 kOe at room temperature. This is the largest value among magnetic ferrites to date. Such a large-Hc ferrite is expected to greatly expand the application of magnetic ferrites. Furthermore, when the temperature dependence of the magnetic properties was measured, an even larger Hc value of 45 kOe was recorded at 200 K. Such large Hc values are much larger than those of conventional hard magnetic ferrites.

6.
Chemistry ; 22(26): 8872-8, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27219716

RESUMO

Macroscopically oriented stable organic radicals have been obtained by using a liquid-crystalline (LC) gel composed of an l-isoleucine-based low molecular weight gelator containing a 2,2,6,6-tetramethylpiperidine 1-oxyl moiety. The LC gel has allowed magnetic measurements of the oriented organic radical. The gelator has formed fibrous aggregates in liquid crystals via intermolecular hydrogen bonds. The fibrous aggregates of the radical gelator are formed and oriented on cooling by applying a magnetic field to the mixture of liquid crystals and the gelator. Superconducting quantum interference device (SQUID) measurements have revealed that both oriented and nonoriented fibrous aggregates exhibited antiferromagnetic interactions, in which super-exchange interaction constant J is estimated as -0.89 cm(-1) .

7.
Inorg Chem Front ; 11(5): 1366-1380, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38420599

RESUMO

Multifunctional optical materials can be realized by combining stimuli-responsive photoluminescence (PL), e.g., optical thermometry, with non-linear optical (NLO) effects, such as second-harmonic generation (SHG). We report a novel approach towards SHG-active luminescent thermometers achieved by constructing unique iridium(iii) complexes, cis-[IrIII(CN)2(R,R-pinppy)2]- (R,R-pinppy = (R,R)-2-phenyl-4,5-pinenopyridine), bearing both a chiral 2-phenylpyridine derivative and cyanido ligands, the latter enabling the formation of a series of molecular materials: (TBA)[IrIII(CN)2(R,R-pinppy)2]·2MeCN (1) (TBA+ = tetrabutylammonium) and (nBu-DABCO)2[IrIII(CN)2(R,R-pinppy)2](i)·MeCN (2) (nBu-DABCO+ = 1-(n-butyl)-1,4-diazabicyclo-[2.2.2]octan-1-ium) hybrid salts, (TBA)2{[LaIII(NO3)3(H2O)0.5]2[IrIII(CN)2(R,R-pinppy)2]2} (3) square molecules, and {[LaIII(NO3)2(dmf)3][IrIII(CN)2(R,R-pinppy)2]}·MeCN (4) coordination chains. Thanks to the chiral pinene group, 1-4 crystallize in non-centrosymmetric space groups leading to SHG activity, while the N,C-coordination of ppy-type ligands to Ir(iii) centers generates visible charge-transfer (CT) photoluminescence. The PL characteristics are distinctly temperature-dependent which was utilized in achieving ratiometric optical thermometry below 220 K. The PL phenomena were rationalized by DFT/TD-DFT calculations indicating an MLCT-type of the emission in obtained Ir(iii) complexes with the rich vibronic structure providing a few emission bands that variously depend on temperature due to the role of thermally activated vibrations. As these crucial vibrational modes depend on the crystal lattice, the thermometry performance differs within 1-4 being the most efficient in 4 while the SHG is by far the best also for 4. This proves that pinene-functionalized cyclometalated dicyanidoiridates(iii) are great prerequisites for tunable PL-NLO conjunction with the most effective multifunctionality ensured by the insertion of these anions into bimetallic frameworks.

8.
Nat Commun ; 15(1): 267, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267429

RESUMO

Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnIIIFeII tetragonal and MnIIFeIII cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.

9.
Acc Chem Res ; 45(10): 1749-58, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22869535

RESUMO

The study of photoinduced phase-transition materials has implications for the fields of inorganic chemistry, solid-state chemistry, and materials science. Cyano-bridged bimetal assemblies are promising photomagnetic materials. Because cyano-bridged bimetal assemblies possess various absorption bands in the visible light region, their electronic and spin states can be controlled by visible light irradiation. Moreover, the selection of magnetic metal ions and organic ligands provide a way of controlling spin-spin interactions through a cyano bridge. In this Account, we describe cyano-bridged bimetal assemblies developed in our laboratory. Cu(II)(2)[Mo(IV)(CN)(8)]·8H(2)O (CuMo), Rb(I)Mn(II)[Fe(III)(CN)(6)] (RbMnFe), and Co(II)(3)[W(V)(CN)(8)](2)·(pyrimidine)(4)·6H(2)O (CoW) induce photomagnetism via photoinduced metal-to-metal charge transfers (MM'CT), while Fe(II)(2)[Nb(IV)(CN)(8)]·(4-pyridinealdoxime)(8)·2H(2)O (FeNb) exhibits a photoinduced magnetization via a photoinduced spin crossover. Irradiation with 473 nm light causes the CuMo system to exhibit a spontaneous magnetization with a Curie temperature (T(C)) of 25 K, but irradiation with 532, 785, and 840 nm light reduces the magnetization. In this reversible photomagnetic process, excitation of the MM'CT from Mo(IV) to Cu(II) produces a ferromagnetic mixed-valence isomer of Cu(I)Cu(II)[Mo(V)(CN)(8)]·8H(2)O (CuMo'). CuMo' returns to CuMo upon irradiation in the reverse-M'MCT band. RbMnFe shows a charge transfer (CT)-induced phase transition from the Mn(II)-Fe(III) phase to the Mn(III)-Fe(II) phase. Irradiation with 532 nm light converts the Mn(III)-Fe(II) phase into the Mn(II)-Fe(III) phase, and we observe photodemagnetization. In contrast, irradiation of the Mn(II)-Fe(III) phase with 410 nm light causes the reverse phase transition. A CT-induced Jahn-Teller distortion is responsible for this visible light-induced reversible photomagnetic effect. In the CoW system, a CT-induced spin transition causes the thermal phase transition from the Co(II)-W(V) phase to the Co(III)-W(IV) phase. Irradiation of the Co(III)-W(IV) phase with 840 nm light causes ferromagnetism with a T(C) of 40 K and magnetic coercive field (H(c)) of 12,000 Oe, but excitation of the back M'MCT (Co(II) → W(V)) with 532 nm light leads to the reverse phase transition. These examples of the photomagnetic effect have occurred by exciting MM'CT bands. In the fields of inorganic chemistry and materials science, researchers have studied extensively the photoinduced phase transitions between low-spin (LS) and high-spin (HS) transition metal ions. Recently, we have observed the first example of photoinduced spin crossover ferromagnetism with a FeNb system (T(C) = 20 K and H(c) = 240 Oe), in which a strong superexchange interaction between photoproduced Fe(II)(HS) and neighboring paramagnetic Nb(IV) operates through a CN bridge. The optical switching magnets described in this Account may lead to novel optical recording technologies such as optomagnetic memories and optical computers.

10.
J Chem Phys ; 139(8): 084303, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24006993

RESUMO

Resonant couplings of the electronic states and the stretching vibrations of CN(-) ligands, which bridges metal ions, is investigated by resonance Raman spectroscopy for Rb(0.94)Mn[Fe(CN)6](0.98)·0.2H2O. Large excitation wavelength dependences over one order of magnitude were found for Raman peaks corresponding to different valence pairs of metal ions in the excitation wavelength range between 350 and 632 nm. In the thermal low-temperature phase, the CN(-) stretching modes due to the low-temperature-phase configuration (Fe(2+)-Mn(3+)) and the phase-boundary configuration (Fe(3+)-Mn(3+)) are coupled to the Fe(2+)-to-Mn(3+) intervalence transfer band and Jahn-Teller distorted Mn(3+) d-d transition band, respectively. In the photoinduced low-temperature phase, the Fe(3+)-Mn(3+) mode shows strong resonant enhancement with the CN(-)-to-Fe(3+) charge-transfer band, which exists in the high-temperature phase with a cubic structure. From these resonance behaviors, we conclude that the local lattice symmetry of the photoinduced phase is cubic in contrast with the tetragonal symmetry in the thermal low-temperature phase.

11.
Chem Commun (Camb) ; 59(51): 7875-7886, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37249011

RESUMO

Effective reuse of waste heat energy is an important energy savings issue for green transformation. In general, phase-change heat storage materials cannot store energy for a prolonged period. If a solid material could conserve the accumulated thermal energy and release it only on demand, then its heat-storage application potential is considerably widened. From this angle, in 2015, we proposed the concept of a long-term heat-storage material, in which latent heat is preserved until the material is triggered by an external stimulus. This feature article describes long-term heat-storage ceramics composed of lambda-trititanium-pentoxide (λ-Ti3O5) from their discovery to heat-storage properties and future applications.


Assuntos
Temperatura Alta , Titânio
12.
J Phys Chem Lett ; 14(46): 10420-10426, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37955968

RESUMO

The development of nanolayered materials is one of the greatest challenges in nanoscience. Until now, pseudohalogen-bridged nanosheets using the mechanical exfoliation method have not been reported. A state-of-the-art material, {[FeII(3-acetylpyridine)2][HgII(µ-SCN)4]}n (1), has been developed to achieve the goal. The compound forms a two-dimensional (2D) coordination polymer with weak out-of-plane van der Waals interactions and has an intrinsic tendency to form shear planes perpendicular to the crystallographic c-direction. These structural features predispose 1 to mechanical exfoliation realized by employing the "Scotch-tape method". As a result, nanosheets were fabricated and characterized by digital optical microscopy, scanning electron microscopy, and atomic force microscopy. The nanosheets were found to have a minimum thickness of ∼15 nm and a lateral size of several micrometers. As the first example of thiocyanato-bridged coordination nanosheets, these materials extend the scope of 2D materials and potentially pave the way toward developing nanolayered materials.

13.
Nat Commun ; 14(1): 8466, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151489

RESUMO

Solid refrigerants exhibiting a caloric effect upon applying external stimuli are receiving attention as one of the next-generation refrigeration technologies. Herein, we report a new inorganic refrigerant, rubidium cyano-bridged manganese-iron-cobalt ternary metal assembly (cyano-RbMnFeCo). Cyano-RbMnFeCo shows a reversible barocaloric effect with large reversible adiabatic temperature changes of 74 K (from 57 °C to -17 °C) at 340 MPa, and 85 K (from 88 °C to 3 °C) at 560 MPa. Such large reversible adiabatic temperature changes have yet to be reported among caloric effects in solid-solid phase transition refrigerants. The reversible refrigerant capacity is 26000 J kg-1 and the temperature window is 142 K. Additionally, cyano-RbMnFeCo shows barocaloric effects even at low pressures, e.g., reversible adiabatic temperature change is 21 K at 90 MPa. Furthermore, direct measurement of the temperature change using a thermocouple shows +44 K by applying pressure. The temperature increase and decrease upon pressure application and release are repeated over 100 cycles without any degradation of the performance. This material series also possesses a high thermal conductivity value of 20.4 W m-1 K-1. The present barocaloric material may realize a high-efficiency solid refrigerant.

14.
Inorg Chem ; 51(5): 2852-9, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22356253

RESUMO

The study of the metastable states, obtained by thermal quenching or by light irradiation in the [{Co(prm)(2)}(2){Co(H(2)O)(2)}{W(CN)(8)}(2)]·4H(2)O complex, is reported using powder X-ray diffraction, Raman spectroscopy, optical reflectivity, and magnetic measurements. This compound is characterized by a electron-transfer (ET) phase transition occurring between a high-temperature phase (HT phase) formed by paramagnetic Co(II)-W(V) units and a low-temperature phase (LT phase) formed by diamagnetic Co(III)-W(IV) units. Metastable phases can be induced at low temperature either by thermal quenching rapidly cooling phase named RC or by irradiation photo-induced phase named PI similar to the well-known Light-Induced Excited Spin State Trapping effect. The relaxation dynamics of the metastable phases have been studied and revealed some differences between the RC and PI phases. The sigmoidal shape of the relaxation curves in the RC phase is in agreement with the cooperative nature of the process. Thermodynamic parameters that govern the relaxation have been determined and used to reproduce the experimental Thermal-Induced Excited Spin State Trapping curve.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Pirimidinas/química , Tungstênio/química , Imãs/química , Modelos Moleculares , Análise Espectral Raman , Termodinâmica , Difração de Raios X
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120414, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34619511

RESUMO

We investigated the vibrational density of states of sodium carboxymethyl starch (CM-starch) by terahertz (THz) time-domain spectroscopy. The CM-starch showed a broad peak at ∼3 THz. The structure of the peak was similar to those corresponding to glucose-based polymer glasses possessing hydrogen bonds. The boson peak (BP) appeared at 1.16 THz at the lowest temperature and disappeared because of the existence of excess wing at higher temperatures. However, based on our novel BP frequency determination method using the inflection point of the extinction coefficient, the BP frequency showed almost no dependence on temperature. Further, the chain length dependence of the BP frequency of the glucose-based glasses showed that the BP frequency of the polymer glass was slightly lower than that of the monomer glass. The power law behaviour of the absorption coefficient suggested the existence of fractons, and the fractal dimension was estimated to be 2.33.


Assuntos
Espectroscopia Terahertz , Ligação de Hidrogênio , Amido/análogos & derivados , Vibração
16.
J Am Chem Soc ; 133(39): 15328-31, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21913689

RESUMO

A complex-as-ligand strategy to get a multifunctional molecular material led to a metal-organic framework with the formula (NH(4))(4)[MnCr(2)(ox)(6)]·4H(2)O. Single-crystal X-ray diffraction revealed that the anionic bimetallic coordination network adopts a chiral three-dimensional quartz-like architecture. It hosts ammonium cations and water molecules in functionalized channels. In addition to ferromagnetic ordering below T(C) = 3.0 K related to the host network, the material exhibits a very high proton conductivity of 1.1 × 10(-3) S cm(-1) at room temperature due to the guest molecules.

17.
Dalton Trans ; 50(2): 452-459, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33393552

RESUMO

Iron oxide magnets, which are composed of the common elements iron and oxygen, are called ferrite magnets. They have diverse applications because they are chemically stable and inexpensive. Epsilon-iron oxide (ε-Fe2O3) is a polymorph that shows an extremely large coercive field as a magnetic oxide. It maintains its ferromagnetic ordering even when downsized to a single nano-sized scale (i.e.,<10 nm). Due to these characteristics, ε-Fe2O3 is highly expected to be used for high-density magnetic recording media in the big data era. Here, we describe the recent developments of magnetic films composed of metal-substituted ε-iron oxide, ε-MxFe2-xO3 (M: substitution metal), toward the next-generation of magnetic media.

18.
J Am Chem Soc ; 132(19): 6620-1, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20420388

RESUMO

We observed high proton conductivities of 1.2 x 10(-3) and 1.6 x 10(-3) S cm(-1) on Co[Cr(CN)(6)](2/3).zH(2)O and V[Cr(CN)(6)](2/3).zH(2)O, respectively, and an interference effect between magnetic ordering and ionic conduction below the magnetic phase transition temperature.

19.
RSC Adv ; 10(65): 39611-39616, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-35515366

RESUMO

Herein we report crystal growth control of rod-shaped ε-Fe2O3 nanocrystals by developing a synthesis based on the sol-gel technique using ß-FeO(OH) as a seed in the presence of a barium cation. ε-Fe2O3 nanocrystals are obtained over a wide calcination temperature range between 800 °C and 1000 °C. A low calcination temperature (800 °C) provides an almost cubic rectangular-shaped ε-Fe2O3 nanocrystal with an aspect ratio of 1.4, whereas a high calcination temperature (1000 °C) provides an elongated rod-shaped ε-Fe2O3 nanocrystal with an aspect ratio of 3.3. Such systematic anisotropic growth of ε-Fe2O3 is achieved due to the wide calcination temperature in the presence of barium cations. The surface energy and the anisotropic adsorption of barium on the surface of ε-Fe2O3 can explain the anisotropic crystal growth of rod-shaped ε-Fe2O3 along the crystallographic a-axis. The present work may provide important knowledge about how to control the anisotropic crystal shape of nanomaterials.

20.
Chem Sci ; 11(33): 8989-8998, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34123153

RESUMO

Atomic vibrations due to stretching or bending modes cause optical phonon modes in the solid phase. These optical phonon modes typically lie in the frequency range of 102 to 104 cm-1. How much can the frequency of optical phonon modes be lowered? Herein we show an extremely low-frequency optical phonon mode of 19 cm-1 (0.58 THz) in a Rb-intercalated two-dimensional cyanide-bridged Co-W bimetal assembly. This ultralow frequency is attributed to a millefeuille-like structure where Rb ions are very softly sandwiched between the two-dimensional metal-organic framework, and the Rb ions slowly vibrate between the layers. Furthermore, we demonstrate temperature-induced and photo-induced switching of this low-frequency phonon mode. Such an external-stimulation-controllable sub-terahertz (sub-THz) phonon crystal, which has not been reported before, should be useful in devices and absorbers for high-speed wireless communications such as beyond 5G or THz communication systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA