Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(19): 14103-14107, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38695831

RESUMO

Metal-oxide nanocomposites (MONs) are of pivotal importance as electrode materials, yet lack a guiding principle to tune their phase texture. Here we report that the phase texture of MONs can be tuned at the nanoscale by controlling the nanophase separation of precursor alloys. In situ transmission electron microscopy (in situ TEM) has demonstrated that a MON material of platinum (Pt) and cerium oxide (CeO2) is obtained through promoted nanophase separation of a Pt5Ce precursor alloy in an atmosphere containing oxygen (O2) and carbon monoxide (CO). The Pt-CeO2 MON material comprised an alternating stack of nanometre-thick layers of Pt and CeO2 in different phase textures ranging from lamellae to mazes, depending on the O2 fraction in the atmosphere. Mathematical simulations have demonstrated that the phase texture of MONs originates from a balance in the atomic diffusions across the alloy precursor, which is controllable by the O2 fraction, temperature, and composition of the precursor alloys.

2.
Langmuir ; 36(12): 3004-3015, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32150418

RESUMO

Pt/Au alloy nanoparticles (NPs) in a wide composition range have been synthesized by room-temperature simultaneous sputter deposition from two independent magnetron sources onto liquid PEG (MW = 600). The prepared NPs were alloyed with the face-centered cubic (fcc) structure. In addition, the particle sizes, composition, and shape are strongly correlated but can be tailored by an appropriate variation of the sputtering parameters. No individual particle but large agglomerates with partial alloy structure formed at Pt content of less than 16 atom %. Highly dispersed NPs with no agglomeration were observed in PEG when the quantity of Pt is more than 26 atom %. On the other hand, a small amount of Pt could terminate the agglomeration of Au when sputtering on the grids for transmission electron microscope observation. Our experiment and computer simulation carried out by two different methods indicate that the composition-dependent particle size of Pt/Au can be explained by the atomic concentration, formation energy of the cluster, and interaction between different metal atoms and the PEG molecule.

3.
Langmuir ; 35(25): 8418-8427, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31194557

RESUMO

We use a green sputtering technique to deposit a Pt/Cu alloy target on liquid polyethylene glycol (PEG) to obtain well-dispersed and stable Pt29Cu71 alloy nanoparticles (NPs). The effects of sputtering current, rotation speed of the stirrer, sputtering time, sputtering period, and temperature of PEG on the particle size are studied systematically. Our key results demonstrate that the aggregation and growth of Pt/Cu alloy NPs occurred at the surface as well as inside the liquid polymer after the particles landed on the liquid surface. According to particle size analysis, a low sputtering current, high rotation speed for the stirrer, short sputtering period, and short sputtering time are found to be favorable for producing small-sized single crystalline alloy NPs. On the other hand, varying the temperature of the liquid PEG does not have any significant impact on the particle size. Thus, our findings shed light on controlling NP growth using the newly developed green sputtering deposition technique.

4.
Langmuir ; 34(13): 4024-4030, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29526107

RESUMO

We herein present the preparation of short, bulky cationic thiolate (thiocholine)-protected fluorescent Au nanoclusters via sputter deposition over a liquid polymer matrix. The obtained Au nanoclusters showed near-infrared fluorescence and had an average core diameter of 1.7 ± 0.6 nm, which is too large compared to that of the reported fluorescent Au nanoclusters prepared via chemical means. We revealed the mechanism of formation of this unique material using single-particle electron microscopy, optical measurements, X-ray photoelectron spectroscopy (XPS), and high-performance liquid chromatography fractionations. The noncrystallized image was observed via single-particle high-angle annular dark-field scanning transmission electron microscopy observations and compared with chemically synthesized crystalline Au nanoparticle with the same diameter, which demonstrated the unique structural characteristic speculated via XPS. The size fractionation and size-dependent fluorescence measurement, together with other observations, indicated that the nanoclusters most probably contained a mixture of very small fluorescent species in their aggregated form and were derived from the sputtering process itself and not from the interaction between thiol ligands.

5.
Langmuir ; 33(43): 12389-12397, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28972375

RESUMO

Alloy nanoparticles (NPs) of a bimetal system, Au/Cu, that form intermetallic compounds in a bulk state have been successfully produced using a double-target sputtering technique onto a low-cost and biocompatible liquid polymer (polyethylene glycol, PEG). The formation of an Au/Cu solid solution alloy in individual NPs was revealed by scanning transmission electron microscopy-energy-dispersive X-ray elemental mapping analysis. Altering the sputter currents for Au and Cu targets resulted in a tailored NP composition, but the particle sizes did not significantly vary. We found similar structures, sizes, and optical properties of Au/Cu NPs obtained by double-head sputtering on carbon-coated transmission electron microscopy grids or PEG and by Au/Cu alloy target sputtering. Random alloy formation occurred in matrix sputtering using double-target heads. This method is advantageous for manipulating the alloy composition through highly independent control of sputter parameters for each metal target.

6.
Langmuir ; 32(46): 12159-12165, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27797536

RESUMO

A modified magnetron sputtering technique using pentaerythritol tetrakis(3-mercaptopropionate) (PEMP) as a stabilizing agent and liquid dispersion medium was developed to generate photoluminescent copper nanoclusters. The results reveal that, over time, the as-prepared blue-emitting copper nanoclusters were converted to red-emitting copper sulfide nanoclusters. The formation of copper oxide as an intermediate during the conversion of copper to copper sulfide nanoclusters was demonstrated. Furthermore, based on the mechanism of formation of copper sulfide, the kinetics of the conversion process could be controlled via ultraviolet (UV) irradiation of the as-synthesized dispersion. These findings shed light on the formation and conversion of nanoclusters obtained via sputtering into liquid, demonstrating that the method is highly versatile for producing metal nanoclusters and compounds with tailorable composition and optical properties.

7.
Phys Chem Chem Phys ; 17(38): 24556-9, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26344653

RESUMO

Here we report a novel method for modifying commercially available TiO2 nanoparticles by a microwave-induced plasma technique. After the plasma treatment TiO2 nanoparticles showed enhanced visible absorption due to the doped W atoms, and the photocatalytic methylene blue degradation above 440 nm was successfully improved.

8.
Nano Lett ; 14(3): 1172-7, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24506191

RESUMO

Dealloyed nanoporous metals have attracted much attention because of their excellent catalytic activities toward various chemical reactions. Nevertheless, coarsening mechanisms in these catalysts have not been experimentally studied. Here, we report in situ atomic-scale observations of the structural evolution of nanoporous gold during catalytic CO oxidation. The catalysis-induced nanopore coarsening is associated with the rapid diffusion of gold atoms at chemically active surface steps and the surface segregation of residual Ag atoms, both of which are stimulated by the chemical reaction. Our observations provide the first direct evidence that planar defects hinder nanopore coarsening, suggesting a new strategy for developing structurally stable and highly active heterogeneous catalysts.

9.
Nat Commun ; 15(1): 4600, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816382

RESUMO

Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.

10.
Nat Mater ; 11(9): 775-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22886067

RESUMO

Distinct from inert bulk gold, nanoparticulate gold has been found to possess remarkable catalytic activity towards oxidation reactions. The catalytic performance of nanoparticulate gold strongly depends on size and support, and catalytic activity usually cannot be observed at characteristic sizes larger than 5 nm. Interestingly, significant catalytic activity can be retained in dealloyed nanoporous gold (NPG) even when its feature lengths are larger than 30 nm. Here we report atomic insights of the NPG catalysis, characterized by spherical-aberration-corrected transmission electron microscopy (TEM) and environmental TEM. A high density of atomic steps and kinks is observed on the curved surfaces of NPG, comparable to 3-5 nm nanoparticles, which are stabilized by hyperboloid-like gold ligaments. In situ TEM observations provide compelling evidence that the surface defects are active sites for the catalytic oxidation of CO and residual Ag stabilizes the atomic steps by suppressing {111} faceting kinetics.

11.
Microsc Microanal ; 19 Suppl 5: 119-22, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920188

RESUMO

Microstructures of 3C-SiC grown by chemical vapor deposition (CVD) technique on undulant silicon substrate and a further developed technique called switch-back epitaxy (SBE) were studied using transmission electron microscopy (TEM). In case of the CVD sample, the density of the stacking faults was found to be significantly decreasing along growth direction. Sites of collision of stacking faults were observed using high-resolution transmission electron microscopy. Some of the stacking faults were observed to have disappeared after colliding into each other. The stacking faults were identified to be on the same type of plane and had the same type of displacement vector not only in CVD and SBE but also in the epitaxial layer on the SBE SiC samples.

12.
J Nanosci Nanotechnol ; 12(3): 2612-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755098

RESUMO

We have successfully prepared Kompeito-like platinum particles by hydrogen reduction of Pt4+ in the presence of sodium polyacrylate. We performed in situ TEM observation of these platinum particles at high temperatures. At 300 degrees C, a thin carbon layer due to polyacrylate formed on the particle surface. The detailed structure of the particles did not change with temperatures up to 700 degrees C. Continuous heating up to 800 degrees C blunted the particles' edges and also sintering of the particles was observed. This result strongly indicates that the shape change and sintering of platinum particles are exclusively controlled by the carbon layer, which is generated from a surface stabilizer polymer.

13.
J Electron Microsc (Tokyo) ; 61(4): 223-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22499469

RESUMO

The temperature distribution on a centre-holed thin foil of molybdenum, used as a sample and heated using a sample-heating holder for electron microscopy, was measured using an infrared thermal camera. The temperature on the heated foil area located near the heating stage of the heating holder is almost equal to the temperature on the heating stage. However, during the measurement of the temperature at the edge of the hole of the foil located farthest from the heating stage, a drop in temperature should be taken into consideration; however, so far, no method has been developed to locally measure the temperature distribution on the heated sample. In this study, a method for the accurate measurement of temperature distribution on heated samples for electron microscopy is discussed.

14.
Micron ; 158: 103289, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490496

RESUMO

Transmission electron microscopy (TEM) is used to observe the atomic structures of materials. Environmental TEM (ETEM) is a method wherein a gas can be evaluated and it has been used to observe the dynamic reaction between materials and gases at the atomic level. An electron beam (EB), which has a sufficiently high energy (exceeding a few tens of kilovolts), can be used to ionize gas molecules. Subsequently, the ionized molecules might react with the materials during ETEM. Therefore, the current generated by the ions and electrons were measured to verify the presence of ions generated due to the ionization of the N2 gas atmosphere during EB irradiation in ETEM. The electron energy loss spectra (EELS) were acquired from the N2 gas atmosphere to estimate the types of ions generated. The results demonstrated that ions and electrons were generated in the N2 atmosphere during ETEM and EB irradiation. Moreover, the EELS analysis indicated that the generated ion was N2+. The material observation conducted using gas ETEM can detect the reaction between gases, ions, and materials.

15.
ACS Omega ; 7(8): 7414-7420, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35252731

RESUMO

Anisotropic growth to form Cu particles of rod and wire shapes has been obtained typically in a complex system that involves both organic capping agents and Cl- ions. However, the sole effect of Cl- ions on the formation of Cu wires has yet to be fully understood, especially in an organic system. This present work determines the effect of Cl- ions on the morphologies of Cu particles in an organic phase without any capping agents. The results revealed that anisotropic Cu rods could be grown with the sole presence of Cl- ions. The rods have the (011) facets as the long axis, the (111) facets as the tip, and the (100) facets as the side surface. By increasing the Cl- ion concentration, more Cu atoms contributed to the formation of Cu rods and the kinetic growth of the length and the diameter of the rods varied. This suggests that Cl- ions have preferential adsorption on the (100) Cu surfaces to promote the anisotropic growth of Cu. Meanwhile, the adsorption of Cl- to the (111) and (100) surfaces at high Cl- concentrations regulates the relative growth of the particle length and diameter.

16.
Chem Commun (Camb) ; 58(56): 7741-7744, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35723415

RESUMO

Eutectic gallium indium (EGaIn) has drawn considerable research interest in potential liquid catalysis. Herein, we report that EGaIn liquid metal acts as a catalyst for the growth of a graphitic carbon layer from ethanol under ultrasonication. High-speed imaging demonstrated the formation of ultrasonic cavitation bubbles at the liquid metal/ethanol interface, which facilitated the pyrolysis of ethanol into graphitic carbon on the liquid metal surface.

17.
ACS Omega ; 7(7): 6238-6247, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224386

RESUMO

A one-step preparation of alginate-stabilized gold nanoparticles (Au NPs) using the microwave-induced plasma-in-liquid process (MWPLP) was reported. Effects of alginate with various concentrations on the preparation and properties of the synthesized Au NPs, including reaction rate, morphology, size, and optical absorption property, were studied. The introduction of alginate (1) accelerated the reaction rate, (2) prevented aggregation and precipitation due to long time discharge in MWPLP, and (3) provided long-term colloidal stability. An abnormal size change (from large to small) of Au NPs during particle growth, which was opposite to the typical change in bottom-up chemical reduction, was observed and a possible mechanism was proposed based on the dynamical and thermodynamical instability of particles during growth. The strategy of drying and redispersion of Au NPs in alginate solution was also studied. The drying and redispersion process had an imperceptible effect on the Au NPs. As a consequence, this strategy might be an effective technique for the long-term storage of Au NPs and other metal NPs. The alginate-stabilized Au NPs without the addition of toxic reducing or stabilizing agents can be appropriate to biomedical applications.

18.
Chem Sci ; 12(34): 11306-11315, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667541

RESUMO

High-entropy alloys (HEAs) are near-equimolar alloys comprising five or more elements. In recent years, catalysis using HEAs has attracted considerable attention across various fields. Herein, we demonstrate the facile synthesis of nanoporous ultra-high-entropy alloys (np-UHEAs) with hierarchical porosity via dealloying. These np-UHEAs contain up to 14 elements, namely, Al, Ag, Au, Co, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Rh, Ru, and Ti. Furthermore, they exhibit high catalytic activities and electrochemical stabilities in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic media, superior to that of commercial Pt/graphene and IrO2 catalysts. Our results offer valuable insights for the selection of elements as catalysts for various applications.

19.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S75-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20573747

RESUMO

Sintering behavior of copper nanoparticles with a protective layer of gelatin synthesized by wet-chemical process with an average diameter of 45 nm has been observed using in-situ transmission electron microscopy (TEM). Copper nanoparticles were sublimated without sintering at about 925 degrees C at 2.0 x 10(-)(5) Pa, and carbonized gelatin remained and retained the shape of the initial layer of nanoparticles. Copper nanoparticles were sintered without sublimation at about 250 degrees C with between 1.0 x 10(-)(4) and 6.0 x 10(-)(4) Pa of oxygen gas flow. It was found that the surface of the sintered copper was covered by a gelatin layer.

20.
Nanoscale Adv ; 2(4): 1456-1464, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132324

RESUMO

Precise design of hollow nanostructures can be realized via various approaches developed in the last two decades, endowing nanomaterials with unique structures and outstanding performances, showing their usefulness in a broad range of fields. Herein, we demonstrate the formation of SnO2@SiO2 hollow nanostructures, for the first time, by interaction between liquid state Sn cores and SiO2 shell structures inside Sn@SiO2 core-shell nanoparticles with real-time observation via in situ transmission electron microscopy (TEM). Based on the in situ results, designed transformation of the nanoparticle structure from core-shell Sn@SiO2 to yolk-shell Sn@SiO2 and hollow SnO2@SiO2 is demonstrated, showing the controllable structure of core-shell Sn@SiO2 nanoparticles via fixing liquid-state Sn inside a SiO2 shell which has a certain Sn containing capacity. The present approach expands the toolbox for the design and preparation of yolk-shell and hollow nanostructures, thus providing us with a new strategy for fabrication of more complicated nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA