Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(16): 9633-9732, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39137296

RESUMO

Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.

2.
J Am Chem Soc ; 143(41): 16976-16992, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34618454

RESUMO

Semiconducting polymer dots (Pdots) have emerged as versatile probes for bioanalysis and imaging at the single-particle level. Despite their utility in multiplexed analysis, deep blue Pdots remain rare due to their need for high-energy excitation and sensitivity to photobleaching. Here, we describe the design of deep blue fluorophores using structural constraints to improve resistance to photobleaching, two-photon absorption cross sections, and fluorescence quantum yields using the hexamethylazatriangulene motif. Scanning tunneling microscopy was used to characterize the electronic structure of these chromophores on the atomic scale as well as their intrinsic stability. The most promising fluorophore was functionalized with a polymerizable acrylate handle and used to give deep-blue fluorescent acrylic polymers with Mn > 18 kDa and D < 1.2. Nanoprecipitation with amphiphilic polystyrene-graft-(carboxylate-terminated poly(ethylene glycol)) gave water-soluble Pdots with blue fluorescence, quantum yields of 0.81, and molar absorption coefficients of (4 ± 2) × 108 M-1 cm-1. This high brightness facilitated single-particle visualization with dramatically improved signal-to-noise ratio and photobleaching resistance versus an unencapsulated dye. The Pdots were then conjugated with antibodies for immunolabeling of SK-BR3 human breast cancer cells, which were imaged using deep blue fluorescence in both one- and two-photon excitation modes.

3.
J Cheminform ; 16(1): 117, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39468626

RESUMO

Drug solubility is an important parameter in the drug development process, yet it is often tedious and challenging to measure, especially for expensive drugs or those available in small quantities. To alleviate these challenges, machine learning (ML) has been applied to predict drug solubility as an alternative approach. However, the majority of existing ML research has focused on the predictions of aqueous solubility and/or solubility at specific temperatures, which restricts the model applicability in pharmaceutical development. To bridge this gap, we compiled a dataset of 27,000 solubility datapoints, including solubility of small molecules measured in a range of binary solvent mixtures under various temperatures. Next, a panel of ML models were trained on this dataset with their hyperparameters tuned using Bayesian optimization. The resulting top-performing models, both gradient boosted decision trees (light gradient boosting machine and extreme gradient boosting), achieved mean absolute errors (MAE) of 0.33 for LogS (S in g/100 g) on the holdout set. These models were further validated through a prospective study, wherein the solubility of four drug molecules were predicted by the models and then validated with in-house solubility experiments. This prospective study demonstrated that the models accurately predicted the solubility of solutes in specific binary solvent mixtures under different temperatures, especially for drugs whose features closely align within the solutes in the dataset (MAE < 0.5 for LogS). To support future research and facilitate advancements in the field, we have made the dataset and code openly available. Scientific contribution Our research advances the state-of-the-art in predicting solubility for small molecules by leveraging ML and a uniquely comprehensive dataset. Unlike existing ML studies that predominantly focus on solubility in aqueous solvents at fixed temperatures, our work enables prediction of drug solubility in a variety of binary solvent mixtures over a broad temperature range, providing practical insights on the modeling of solubility for realistic pharmaceutical applications. These advancements along with the open access dataset and code support significant steps in the drug development process including new molecule discovery, drug analysis and formulation.

4.
J Chem Theory Comput ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146234

RESUMO

Structure-based methods in drug discovery have become an integral part of the modern drug discovery process. The power of virtual screening lies in its ability to rapidly and cost-effectively explore enormous chemical spaces to select promising ligands for further experimental investigation. Relative free energy perturbation (RFEP) and similar methods are the gold standard for binding affinity prediction in drug discovery hit-to-lead and lead optimization phases, but have high computational cost and the requirement of a structural analog with a known activity. Without a reference molecule requirement, absolute FEP (AFEP) has, in theory, better accuracy for hit ID, but in practice, the slow throughput is not compatible with VS, where fast docking and unreliable scoring functions are still the standard. Here, we present an integrated workflow to virtually screen large and diverse chemical libraries efficiently, combining active learning with a physics-based scoring function based on a fast absolute free energy perturbation method. We validated the performance of the approach in the ranking of structurally related ligands, virtual screening hit rate enrichment, and active learning chemical space exploration; disclosing the largest reported collection of free energy simulations to date.

5.
Adv Mater ; 36(30): e2402369, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38794859

RESUMO

Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science.

6.
Patterns (N Y) ; 3(10): 100588, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277819

RESUMO

Artificial intelligence (AI) and machine learning (ML) are expanding in popularity for broad applications to challenging tasks in chemistry and materials science. Examples include the prediction of properties, the discovery of new reaction pathways, or the design of new molecules. The machine needs to read and write fluently in a chemical language for each of these tasks. Strings are a common tool to represent molecular graphs, and the most popular molecular string representation, Smiles, has powered cheminformatics since the late 1980s. However, in the context of AI and ML in chemistry, Smiles has several shortcomings-most pertinently, most combinations of symbols lead to invalid results with no valid chemical interpretation. To overcome this issue, a new language for molecules was introduced in 2020 that guarantees 100% robustness: SELF-referencing embedded string (Selfies). Selfies has since simplified and enabled numerous new applications in chemistry. In this perspective, we look to the future and discuss molecular string representations, along with their respective opportunities and challenges. We propose 16 concrete future projects for robust molecular representations. These involve the extension toward new chemical domains, exciting questions at the interface of AI and robust languages, and interpretability for both humans and machines. We hope that these proposals will inspire several follow-up works exploiting the full potential of molecular string representations for the future of AI in chemistry and materials science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA