RESUMO
We introduce a Spin Transfer Automated Reactor (STAR) that produces continuous parahydrogen induced polarization (PHIP), which is stable for hours to days. We use the PHIP variant called signal amplification by reversible exchange (SABRE), which is particularly well suited to produce continuous hyperpolarization. The STAR is operated in conjunction with benchtop (1.1â T) and high field (9.4â T) NMR magnets, highlighting the versatility of this system to operate with any NMR or MRI system. The STAR uses semipermeable membranes to efficiently deliver parahydrogen into solutions at nano to milli Tesla fields, which enables 1 H, 13 C, and 15 N hyperpolarization on a large range of substrates including drugs and metabolites. The unique features of the STAR are leveraged for important applications, including continuous hyperpolarization of metabolites, desirable for examining steady-state metabolism in vivo, as well as for continuous RASER signals suitable for the investigation of new physics.
Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância MagnéticaRESUMO
Despite its enormous utility in structural characterization, nuclear magnetic resonance (NMR) spectroscopy is inherently limited by low spin polarization. One method to address the low polarization is para-hydrogen (p-H2) induced polarization (PHIP) which uses the singlet spin isomer of H2 to generate disparate nuclear spin populations to amplify the associated NMR signals. PHIP often relies on thermal catalysis or, more infrequently, UV-activated catalytic hydrogenation. Light-activated hydrogenation enables direct and timed control over the hyperpolarization of target substrates, critical for identifying short-lived intermediates. Here, we use an established Ir(III) triplet photosensitizer (PS) to visible light sensitize the triplet ligand-field states in the d6-transition metal dihydride Ru(CO)(PPh3)3(H)2 (1). Excitation inside a 9.4 T NMR spectrometer with the PS and a 420 nm blue LED, under 3 atm of p-H2, successfully photosensitized hyperpolarization in 1 and in a range of unsaturated substrates at and below room temperature, up to 1630-fold. In otherwise identical experimental conditions without light activation, no polarization was realized in 1 or the substrates evaluated. We believe triplet-sensitized PHIP (Trip-PHIP) represents a facile experimental means for probing triplet sensitized light activation in transition metal catalysts possessing low-lying triplet ligand-field states, providing mechanistic insight of potentially tremendous value in chemical catalysis.