Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Pathog ; 19(1): e1011070, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603024

RESUMO

Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.


Assuntos
Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Humanos , Encéfalo/metabolismo , Encéfalo/virologia , Células-Tronco Neurais/virologia , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/metabolismo , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/genética
2.
Pharm Res ; 38(12): 2129-2145, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34904202

RESUMO

PURPOSE: Rebamipide (REB) a potent anti-ulcer agent, has not been exploited to its full potential, owing to it extremely poor solubility, leading to highly diminutive bioavailability (<10%). The purpose is to carry out its solid-state modification. METHOD: Cocrystallisation was done with three GRAS coformers namely citric acid (CA), 3,4-dihydroxybenzoic acid (DHBA) and oxalic acid (OXA) employing the liquid-assisted grinding method. Cocrystal formation was based upon amide-carboxyl and amide-hydroxyl supramolecular synthons. Characterization of novel cocrystals i.e. RCA, RDHBA and ROXA was carried out by DSC, PXRD and additionally by FT-IR spectroscopy. Chemical structures have been determined utilizing the PXRD pattern by Material Studio®. Furthermore, cocrystals were subjected to solubility and intrinsic dissolution rate (IDR) evaluation. Also, pharmacodynamic and pharmacokinetic studies were performed and compared with pure rebamipide. RESULT: The appearances of a single sharp melting endotherm in DSC, along with novel characteristic peaks in PXRD infer the existence of a new crystalline form. Shifting in characteristic vibrations in FT-IR spectroscopy supports the establishment of distinct hydrogen-bonded networks. Structural determination revealed that RCA crystallizes in 'Bb2b' space groups whereas RDHBA in 'P1' and ROXA crystallize out in the 'P-1' space group. All the cocrystals exhibited superior apparent solubility and almost 7-13 folds increase in IDR. Furthermore, 1.6-2.5 folds enhancement in relative bioavailability and remarkable amplification in anti-ulcer, anti-inflammatory and the antioxidant potential of these cocrystals were observed. CONCLUSION: The study ascertains the advantages of cocrystallization, with RCA showing greatest potential and suggests a viable alternative approach for improved formulation of rebamipide.


Assuntos
Alanina/análogos & derivados , Produtos Biológicos/química , Engenharia Química , Edema/tratamento farmacológico , Quinolonas/química , Úlcera Gástrica/tratamento farmacológico , Alanina/administração & dosagem , Alanina/química , Alanina/farmacocinética , Animais , Disponibilidade Biológica , Produtos Biológicos/farmacocinética , Carragenina/administração & dosagem , Carragenina/imunologia , Química Farmacêutica/métodos , Cristalização , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Edema/induzido quimicamente , Edema/imunologia , Humanos , Ligação de Hidrogênio , Indometacina , Masculino , Difração de Pó , Quinolonas/administração & dosagem , Quinolonas/farmacocinética , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Úlcera Gástrica/induzido quimicamente
3.
J Biol Chem ; 290(32): 19403-22, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26055715

RESUMO

All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the ß-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CL(pro)) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CL(pro) from other ß-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CL(pro) is less efficient at processing a peptide substrate due to MERS-CoV 3CL(pro) being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CL(pro) enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CL(pro) is a weakly associated dimer (Kd ∼52 µm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CL(pro) were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CL(pro) undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CL(pro) from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CL(pro) dimerization. Activation of MERS-CoV 3CL(pro) through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CL(pro) inhibitors as antiviral agents.


Assuntos
Antivirais/química , Cisteína Endopeptidases/química , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Peptidomiméticos/química , Multimerização Proteica/efeitos dos fármacos , Proteínas Virais/química , Sequência de Aminoácidos , Antivirais/síntese química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligantes , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Bioorg Med Chem ; 23(17): 6036-48, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26190463

RESUMO

The bat coronavirus HKU4 belongs to the same 2c lineage as that of the deadly Middle East Respiratory Syndrome coronavirus (MERS-CoV) and shows high sequence similarity, therefore potentiating a threat to the human population through a zoonotic shift or 'spill over' event. To date, there are no effective vaccines or antiviral treatments available that are capable of limiting the pathogenesis of any human coronaviral infection. An attractive target for the development of anti-coronaviral therapeutics is the 3C-like protease (3CL(pro)), which is essential for the progression of the coronaviral life cycle. Herein, we report the screening results of a small, 230-member peptidomimetic library against HKU4-CoV 3CL(pro) and the identification of 43 peptidomimetic compounds showing good to excellent inhibitory potency of HKU4-CoV 3CL(pro) with IC50 values ranging from low micromolar to sub-micromolar. We established structure-activity relationships (SARs) describing the important ligand-based features required for potent HKU4-CoV 3CL(pro) inhibition and identified a seemingly favored peptidic backbone for HKU4-CoV 3CL(pro) inhibition. To investigate this, a molecular sub-structural analysis of the most potent HKU4-CoV 3CL(pro) inhibitor was accomplished by the synthesis and testing of the lead peptidomimetic inhibitor's sub-structural components, confirming the activity of the favored backbone (22A) identified via SAR analysis. In order to elucidate the structural reasons for such potent HKU4-CoV 3CL(pro) inhibition by the peptidomimetics having the 22A backbone, we determined the X-ray structures of HKU4-CoV 3CL(pro) in complex with three peptidomimetic inhibitors. Sequence alignment of HKU4-CoV 3CL(pro), and two other lineage C Betacoronaviruses 3CL(pro)'s, HKU5-CoV and MERS-CoV 3CL(pro), show that the active site residues of HKU4-CoV 3CL(pro) that participate in inhibitor binding are conserved in HKU5-CoV and MERS-CoV 3CL(pro). Furthermore, we assayed our most potent HKU4-CoV 3CL(pro) inhibitor for inhibition of HKU5-CoV 3CL(pro) and found it to have sub-micromolar inhibitory activity (IC50=0.54±0.03µM). The X-ray structures and SAR analysis reveal critical insights into the structure and inhibition of HKU4-CoV 3CL(pro), providing fundamental knowledge that may be exploited in the development of anti-coronaviral therapeutics for coronaviruses emerging from zoonotic reservoirs.


Assuntos
Infecções por Coronavirus/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Inibidores de Proteases/uso terapêutico , Animais , Quirópteros , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Relação Estrutura-Atividade
5.
J Virol ; 87(23): 12611-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027335

RESUMO

Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.


Assuntos
Sequência Conservada , Coronavirus/enzimologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Quimera/classificação , Quimera/genética , Quimera/metabolismo , Quimera/fisiologia , Coronavirus/química , Coronavirus/classificação , Coronavirus/genética , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Cricetinae , Evolução Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeo Hidrolases/genética , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Proteínas Virais/genética
6.
Bioorg Med Chem Lett ; 23(22): 6172-7, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24080461

RESUMO

Herein we report the discovery and SAR of a novel series of SARS-CoV 3CLpro inhibitors identified through the NIH Molecular Libraries Probe Production Centers Network (MLPCN). In addition to ML188, ML300 represents the second probe declared for 3CLpro from this collaborative effort. The X-ray structure of SARS-CoV 3CLpro bound with a ML300 analog highlights a unique induced-fit reorganization of the S2-S4 binding pockets leading to the first sub-micromolar noncovalent 3CLpro inhibitors retaining a single amide bond.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Antivirais/química , Antivirais/farmacologia , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Acetamidas/síntese química , Antivirais/síntese química , Humanos , Modelos Moleculares , Síndrome Respiratória Aguda Grave/virologia , Relação Estrutura-Atividade
7.
Mol Cancer Ther ; 21(7): 1195-1206, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35499461

RESUMO

Mesothelin targeting CAR T cells have limited activity in patients. In this study, we sought to determine if efficacy of anti-mesothelin CAR T cells is dependent on the mesothelin epitopes that are recognized by them. To do so, we developed hYP218 (against membrane-proximal epitope) and SS1 (against membrane-distal epitope) CAR T cells. Their efficacy was assessed in vitro using mesothelin-positive tumor cell lines and in vivo in NSG mice with mesothelin-expressing ovarian cancer (OVCAR-8), pancreatic cancer (KLM-1), and mesothelioma patient-derived (NCI-Meso63) tumor xenografts. Persistence and tumor infiltration of CAR T cells was determined using flow cytometry. hYP218 CAR T cells killed cancer cells more efficiently than SS1 CAR T cells, with a two- to fourfold lower ET50 value (effector-to-target ratio for 50% killing of tumor cells). In mice with established tumors, single intravenous administration of hYP218 CAR T cells lead to improved tumor response and survival compared with SS1 CAR T cells, with complete regression of OVCAR-8 and NCI-Meso63 tumors. Compared with SS1 CAR T cells, there was increased peripheral blood expansion, persistence, and tumor infiltration of hYP218 CAR T cells in the KLM-1 tumor model. Persistence of hYP218 CAR T cells in treated mice led to antitumor immunity when rechallenged with KLM-1 tumor cells. Our results show that hYP218 CAR T cells, targeting mesothelin epitope close to cell membrane, are very effective against mesothelin-positive tumors and are associated with increased persistence and tumor infiltration. These results support its clinical development to treat patients with mesothelin-expressing cancers.


Assuntos
Neoplasias Ovarianas , Receptores de Antígenos Quiméricos , Animais , Linhagem Celular Tumoral , Epitopos/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Mesotelina , Camundongos , Neoplasias Ovarianas/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
8.
Int J Pharm ; 574: 118942, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31830577

RESUMO

The effectiveness of Diacerein as an anti-osteoarthritis drug is limited due to its acutely poor aqueous solubility and bioavailability. The present study demonstrates cocrystallization as a successful technique to improve the biopharmaceutical parameters of diacerein. Three cocrystals of diacerein were prepared by an eco-friendly technique with three suitable coformers namely isonicotinamide, nicotinamide, and theophylline. The formation of a new solid phase was inferred from the DSC thermograms and powder diffraction pattern and was supported by FTIR. The crystal structures of the cocrystals determined from the PXRD pattern using Material Studio software. Detailed analysis showed the formation of supramolecular hetero-synthons of complementary functional groups of the coformers with the carbonyl and carboxyl groups of diacerein. The structural conformation of the cocrystalline state was also provided by the shifts in the ssNMR pattern of the cocrystals. The three new cocrystals were found to have a relatively high solubility and intrinsic dissolution rate which showed remarkable improvement in anti-arthritic activity as compared to diacerein. Thus, proving cocrystallization to be a potential solution to the solubility limited bioavailability problems of diacerein.


Assuntos
Antraquinonas/química , Produtos Biológicos/química , Disponibilidade Biológica , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Niacinamida/química , Difração de Pó/métodos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Teofilina/química , Difração de Raios X/métodos
9.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 11): 1179-81, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19923745

RESUMO

The complex of Tamarindus indica Kunitz-type trypsin inhibitor and porcine trypsin has been crystallized by the sitting-drop vapour-diffusion method using ammonium acetate as precipitant and sodium acetate as buffer. The homogeneity of complex formation was checked by size-exclusion chromatography and further confirmed by reducing SDS-PAGE. The crystals diffracted to 2.0 angstrom resolution and belonged to the tetragonal space group P4(1), with unit-cell parameters a = b = 57.1, c = 120.1 angstrom. Preliminary X-ray diffraction analysis indicated the presence of one unit of inhibitor-trypsin complex per asymmetric unit, with a solvent content of 45%.


Assuntos
Peptídeos/química , Proteínas de Plantas/química , Tamarindus/química , Tripsina/química , Animais , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular , Sementes/química , Sus scrofa , Tamarindus/anatomia & histologia , Difração de Raios X
10.
Nat Commun ; 10(1): 4344, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554802

RESUMO

Innate immune responses to Zika virus (ZIKV) are dampened in the lower female reproductive tract (LFRT) compared to other tissues, but the mechanism that underlies this vulnerability is poorly understood. Using tissues from uninfected and vaginally ZIKV-infected macaques and mice, we show that low basal expression of RNA-sensing pattern recognition receptors (PRRs), or their co-receptors, in the LFRT contributes to high viral replication in this tissue. In the LFRT, ZIKV sensing provides limited protection against viral replication, and the sensors are also minimally induced after vaginal infection. While IFNα/ß receptor signaling offers minimal protection in the LFRT, it is required to prevent dissemination of ZIKV to other tissues, including the upper FRT. Our findings support a role for RNA-sensing PRRs in the dampened innate immunity against ZIKV in the LFRT compared to other tissues and underlie potential implications for systemic dissemination upon heterosexual transmission of ZIKV in women.


Assuntos
Genitália Feminina/imunologia , Imunidade Inata/imunologia , RNA Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Feminino , Regulação Viral da Expressão Gênica , Genitália Feminina/metabolismo , Genitália Feminina/virologia , Humanos , Imunidade Inata/genética , Macaca mulatta , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Viral/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo , Vagina/imunologia , Vagina/metabolismo , Vagina/virologia , Replicação Viral/genética , Replicação Viral/imunologia , Zika virus/genética , Zika virus/fisiologia , Infecção por Zika virus/genética , Infecção por Zika virus/virologia
11.
Cell Chem Biol ; 25(12): 1441-1442, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576660

RESUMO

Latency is the primary barrier to the development of a long-sought cure for HIV-1. In this issue of Cell Chemical Biology, Marian et al., (2018) describe the development of novel compounds targeting the BAF chromatin remodeling complex to reverse HIV latency, with the potential to provide a functional cure.


Assuntos
HIV-1 , Latência Viral , Fatores de Transcrição
12.
mBio ; 9(6)2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401782

RESUMO

Zika virus (ZIKV) infection of neural progenitor cells (NPCs) in utero is associated with neurological disorders, such as microcephaly, but a detailed molecular understanding of ZIKV-induced pathogenesis is lacking. Here we show that in vitro ZIKV infection of human cells, including NPCs, causes disruption of the nonsense-mediated mRNA decay (NMD) pathway. NMD is a cellular mRNA surveillance mechanism that is required for normal brain size in mice. Using affinity purification-mass spectrometry, we identified multiple cellular NMD factors that bind to the viral capsid protein, including the central NMD regulator up-frameshift protein 1 (UPF1). Endogenous UPF1 interacted with the ZIKV capsid protein in coimmunoprecipitation experiments, and capsid expression posttranscriptionally downregulated UPF1 protein levels, a process that we confirmed occurs during ZIKV infection. Cellular fractionation studies show that the ZIKV capsid protein specifically targets nuclear UPF1 for degradation via the proteasome. A further decrease in UPF1 levels by RNAi significantly enhanced ZIKV infection in NPC cultures, consistent with a model in which NMD restricts ZIKV infection in the fetal brain. We propose that ZIKV, via the capsid protein, has evolved a strategy to lower UPF1 levels and dampen antiviral activities of NMD, which in turn contributes to neuropathology in vivoIMPORTANCE Zika virus (ZIKV) is a significant global health threat, as infection has been linked to serious neurological complications, including microcephaly. Using a human stem cell-derived neural progenitor model system, we find that a critical cellular quality control process called the nonsense-mediated mRNA decay (NMD) pathway is disrupted during ZIKV infection. Importantly, disruption of the NMD pathway is a known cause of microcephaly and other neurological disorders. We further identify an interaction between the capsid protein of ZIKV and up-frameshift protein 1 (UPF1), the master regulator of NMD, and show that ZIKV capsid targets UPF1 for degradation. Together, these results offer a new mechanism for how ZIKV infection can cause neuropathology in the developing brain.


Assuntos
Proteínas do Capsídeo/metabolismo , Células-Tronco Neurais/virologia , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , Transativadores/metabolismo , Zika virus/patogenicidade , Proteínas do Capsídeo/genética , Regulação para Baixo , Humanos , Complexo de Endopeptidases do Proteassoma , RNA Helicases/genética , Interferência de RNA , Transativadores/genética , Zika virus/metabolismo , Infecção por Zika virus/virologia
13.
mBio ; 5(2): e00047-14, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24667706

RESUMO

Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (ß-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c ß-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c ß-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis. IMPORTANCE The 2012 outbreak of MERS-CoV raises the specter of another global epidemic, similar to the 2003 SARS-CoV epidemic. MERS-CoV is related to BtCoV HKU5 in target regions that are essential for drug and vaccine testing. Because no small animal model exists to evaluate MERS-CoV pathogenesis or to test vaccines, we constructed a recombinant BtCoV HKU5 that expressed a region of the SARS-CoV spike (S) glycoprotein, thereby allowing the recombinant virus to grow in cell culture and in mice. We show that this recombinant virus targets airway epithelial cells and causes disease in aged mice. We use this platform to (i) identify a broad-spectrum antiviral that can potentially inhibit viruses closely related to MERS-CoV, (ii) demonstrate the absence of increased eosinophilic immune pathology for MERS-CoV N protein-based vaccines, and (iii) mouse adapt this virus to identify viral genetic determinants of cross-species transmission and virulence. This study holds significance as a strategy to control newly emerging viruses.


Assuntos
Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Modelos Animais de Doenças , Animais , Quirópteros , Coronavirus/isolamento & purificação , Coronavirus/patogenicidade , Portadores de Fármacos , Vírus da Encefalite Equina Venezuelana/genética , Eosinofilia/imunologia , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Sistema Respiratório/virologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/efeitos adversos , Vacinas Virais/genética , Vacinas Virais/imunologia
14.
J Med Chem ; 56(2): 534-46, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23231439

RESUMO

A high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). Unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure-activity relationships within S(1'), S(1), and S(2) enzyme binding pockets. The X-ray structure of SARS-CoV 3CLpro bound with 16-(R) was instrumental in guiding subsequent rounds of chemistry optimization. 16-(R) provides an excellent starting point for the further design and refinement of 3CLpro inhibitors that act by a noncovalent mechanism of action.


Assuntos
Acetamidas/química , Acetamidas/farmacologia , Descoberta de Drogas , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Acetamidas/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
15.
PLoS One ; 7(1): e30102, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22291906

RESUMO

Expression of KdpFABC, a K(+) pump that restores osmotic balance, is controlled by binding of the response regulator KdpE to a specific DNA sequence (kdpFABC(BS)) via the winged helix-turn-helix type DNA binding domain (KdpE(DBD)). Exploration of E. coli KdpE(DBD) and kdpFABC(BS) interaction resulted in the identification of two conserved, AT-rich 6 bp direct repeats that form half-sites. Despite binding to these half-sites, KdpE(DBD) was incapable of promoting gene expression in vivo. Structure-function studies guided by our 2.5 Å X-ray structure of KdpE(DBD) revealed the importance of residues R193 and R200 in the α-8 DNA recognition helix and T215 in the wing region for DNA binding. Mutation of these residues renders KdpE incapable of inducing expression of the kdpFABC operon. Detailed biophysical analysis of interactions using analytical ultracentrifugation revealed a 2∶1 stoichiometry of protein to DNA with dissociation constants of 200±100 and 350±100 nM at half-sites. Inactivation of one half-site does not influence binding at the other, indicating that KdpE(DBD) binds independently to the half-sites with approximately equal affinity and no discernable cooperativity. To our knowledge, these data are the first to describe in quantitative terms the binding at half-sites under equilibrium conditions for a member of the ubiquitous OmpR/PhoB family of proteins.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Elementos de Resposta , Transativadores/química , Transativadores/metabolismo , Transativadores/fisiologia , Sequência de Aminoácidos , Sítios de Ligação/genética , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Elementos de Resposta/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA