Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 132(4)2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30578312

RESUMO

Epithelial tissues function as barriers that separate the organism from the environment. They usually have highly curved shapes, such as tubules or cysts. However, the processes by which the geometry of the environment and the cell's mechanical properties set the epithelium shape are not yet known. In this study, we encapsulated two epithelial cell lines, MDCK and J3B1A, into hollow alginate tubes and grew them under cylindrical confinement forming a complete monolayer. MDCK monolayers detached from the alginate shell at a constant rate, whereas J3B1A monolayers detached at a low rate unless the tube radius was reduced. We showed that this detachment is driven by contractile stresses in the epithelium and can be enhanced by local curvature. This allows us to conclude that J3B1A cells exhibit smaller contractility than MDCK cells. Monolayers inside curved tubes detach at a higher rate on the outside of a curve, confirming that detachment is driven by contraction.


Assuntos
Alginatos/química , Colágeno/química , Células Epiteliais/ultraestrutura , Laminina/química , Mecanotransdução Celular , Proteoglicanas/química , Animais , Fenômenos Biomecânicos , Adesão Celular , Técnicas de Cultura de Células , Linhagem Celular , Movimento Celular , Células Imobilizadas , Cães , Combinação de Medicamentos , Células Epiteliais/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Especificidade de Órgãos
2.
Small ; 15(21): e1900162, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951243

RESUMO

Endothelial and epithelial cells usually grow on a curved environment, at the surface of organs, which many techniques have tried to reproduce. Here a simple method is proposed to control curvature of the substrate. Prestrained thin elastomer films are treated by infrared laser irradiation in order to rigidify the surface of the film. Wrinkled morphologies are produced upon stress relaxation for irradiation doses above a critical value. Wrinkle wavelength and depth are controlled by the prestrain, the laser power, and the speed at which the laser scans the film surface. Stretching of elastomer substrates with a "sand clock"-width profile enables the generation of a stress gradient, which results in patterns of wrinkles with a depth gradient. Thus, different combinations of topography changes on the same substrate can be generated. The wavelength and the depth of the wrinkles, which have the characteristic values within a range of several tens of µm, can be dynamically regulated by the substrate reversible stretching. It is shown that these anisotropic features are efficient substrates to control polarization of cell shapes and orientation of their migration. With this approach a flexible tool is provided for a wide range of applications in cell biophysics studies.


Assuntos
Elastômeros/química , Lasers , Animais , Técnicas de Cultura de Células , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Microscopia Confocal , Análise Espectral Raman
3.
Soft Matter ; 10(14): 2381-7, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24623029

RESUMO

Neurons acquire their functional and morphological axo-dendritic polarity by extending, from competing minor processes (neurites), one long axon among numerous dendrites. We employed complementary sets of micropatterns built from 2 and 6 µm wide stripes of various lengths to constrain hippocampal neuron shapes. Using these geometries, we have (i) limited the number of neuronal extensions to obtain a minimal in vitro system of bipolar neurons and (ii) controlled the neurite width during growth by the generation of a progressive cell shape asymmetry on either side of the cellular body. From this geometrical approach, we gained a high level of control of each neurite length and of the localization of axonal specification. To analyze these results, we developed a model based on a width and polarization dependent neurite elongation rate and on the existence of a critical neurite length that sets the axonal fate. Our data on the four series of micro-patterns developed for this study are described by a single set of growth parameters, well supported by experiments. The control of neuronal shapes by adhesive micro-patterns thereby offers a novel paradigm to follow the dynamical process of neurite lengthening and competition through the process of axonal polarization.


Assuntos
Polaridade Celular , Modelos Neurológicos , Neurônios/citologia , Animais , Adesão Celular , Processos de Crescimento Celular , Forma Celular , Hipocampo/citologia , Camundongos , Neurônios/fisiologia
4.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336456

RESUMO

Defective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration. Conditional silencing of YAP1 in rehydrated CF HAECs indicated that YAP1 expression was necessary for the maintenance of junctional complexes. A higher plasma membrane tension in CF HAECs reduced endocytosis, concurrent with the maintenance of active ß1-integrin ectopically located at the apical membrane. Pharmacological inhibition of ß1-integrin accumulation restored YAP1 expression in CF HAECs. These results indicate that dehydration of the CF ASL affects epithelial plasma membrane tension, resulting in ectopic activation of a ß1-integrin/YAP1 signaling pathway associated with degradation of junctional proteins.


Assuntos
Fibrose Cística , Epitélio , Transdução de Sinais , Humanos , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Desidratação/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Integrina beta1/metabolismo , Mucosa Respiratória/metabolismo
5.
Adv Mater ; 35(13): e2206110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36461812

RESUMO

Surface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed. Giving an overview of the emergence of curvature in biological systems, its significance at different length scales becomes apparent. On the other hand, summarizing current findings also shows that both single cells and entire cell sheets, tissues or organisms respond to curvature by modulating their shape and their migration behavior. Finally, the interplay between the distribution of morphogens or micro-organisms and the emergence of curvature across length scales is addressed with examples demonstrating these key mechanistic principles of morphogenesis. Overall, this review highlights that curved interfaces are not merely a passive by-product of the chemical, biological, and mechanical processes but that curvature acts also as a signal that co-determines these processes.


Assuntos
Fenômenos Mecânicos , Membrana Celular , Morfogênese
6.
Dev Cell ; 57(10): 1257-1270.e5, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35568030

RESUMO

Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction.


Assuntos
Actinas , Células Epiteliais , Actinas/metabolismo , Tamanho Celular , Células Epiteliais/metabolismo , Epitélio/metabolismo , Osmose
7.
ACS Appl Bio Mater ; 5(4): 1552-1563, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35274925

RESUMO

Brain tissues demonstrate heterogeneous mechanical properties, which evolve with aging and pathologies. The observation in these tissues of smooth to sharp rigidity gradients raises the question of brain cell responses to both different values of rigidity and their spatial variations, in dependence on the surface chemistry they are exposed to. Here, we used recent techniques of hydrogel photopolymerization to achieve stiffness texturing down to micrometer resolution in polyacrylamide hydrogels. We investigated primary neuron adhesion and orientation as well as glial cell proliferative properties on these rigidity-textured hydrogels for two adhesive coatings: fibronectin or poly-l-lysine/laminin. Our main observation is that glial cell adhesion and proliferation is favored on the stiffer regions when the adhesive coating is fibronectin and on the softer ones when it consists of poly-l-lysine/laminin. This behavior was unchanged by the presence or the absence of neuronal cells. In addition, glial cells were not confined by sharp, micron-scaled gradients of rigidity. Our observations suggest that rigidity sensing could involve adhesion-related pathways that profoundly depend on surface chemistry.


Assuntos
Hidrogéis , Laminina , Adesivos , Fibronectinas/farmacologia , Hidrogéis/farmacologia , Laminina/farmacologia , Neuroglia , Polilisina/farmacologia
8.
Nanomaterials (Basel) ; 12(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214978

RESUMO

Cell rigidity sensing-a basic cellular process allowing cells to adapt to mechanical cues-involves cell capabilities exerting force on the extracellular environment. In vivo, cells are exposed to multi-scaled heterogeneities in the mechanical properties of the surroundings. Here, we investigate whether cells are able to sense micron-scaled stiffness textures by measuring the forces they transmit to the extracellular matrix. To this end, we propose an efficient photochemistry of polyacrylamide hydrogels to design micron-scale stiffness patterns with kPa/µm gradients. Additionally, we propose an original protocol for the surface coating of adhesion proteins, which allows tuning the surface density from fully coupled to fully independent of the stiffness pattern. This evidences that cells pull on their surroundings by adjusting the level of stress to the micron-scaled stiffness. This conclusion was achieved through improvements in the traction force microscopy technique, e.g., adapting to substrates with a non-uniform stiffness and achieving a submicron resolution thanks to the implementation of a pyramidal optical flow algorithm. These developments provide tools for enhancing the current understanding of the contribution of stiffness alterations in many pathologies, including cancer.

9.
Biomaterials ; 282: 121380, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101742

RESUMO

The field of intestinal biology is thirstily searching for different culture methods that complement the limitations of organoids, particularly the lack of a differentiated intestinal compartment. While being recognized as an important milestone for basic and translational biological studies, many primary cultures of intestinal epithelium (IE) rely on empirical trials using hydrogels of various stiffness, whose mechanical impact on epithelial organization remains vague until now. Here, we report the development of hydrogel scaffolds with a range of elasticities and their influence on IE expansion, organization, and differentiation. On stiff substrates (>5 kPa), mouse IE cells adopt a flat cell shape and detach in the short-term. In contrast, on soft substrates (80-500 Pa), they sustain for a long-term, pack into high density, develop columnar shape with improved apical-basal polarity and differentiation marker expression, a phenotype reminiscent of features in vivo mouse IE. We then developed a soft gel molding process to produce 3D Matrigel scaffolds of close-to-nature stiffness, which support and maintain a culture of mouse IE into crypt-villus architecture. Thus, the present work is up-to-date informative for the design of biomaterials for ex vivo intestinal models, offering self-renewal in vitro culture that emulates the mouse IE.


Assuntos
Biomimética , Intestinos , Animais , Diferenciação Celular , Hidrogéis/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Organoides
10.
Dev Cell ; 56(23): 3176-3177, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875221

RESUMO

Both biochemical and mechanical signals coordinate all processes at the origin of the formation of functional organs, including tissue folding, cell shape, and differentiation. In this issue of Developmental Cell, Blonski et al. establish a direct consequence of epithelial monolayer folding on nuclear shape and gene expression.


Assuntos
Diferenciação Celular , Forma Celular , Morfogênese
11.
Nat Chem ; 10(11): 1118-1125, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150727

RESUMO

Cells and organelles are delimited by lipid bilayers in which high deformability is essential to many cell processes, including motility, endocytosis and cell division. Membrane tension is therefore a major regulator of the cell processes that remodel membranes, albeit one that is very hard to measure in vivo. Here we show that a planarizable push-pull fluorescent probe called FliptR (fluorescent lipid tension reporter) can monitor changes in membrane tension by changing its fluorescence lifetime as a function of the twist between its fluorescent groups. The fluorescence lifetime depends linearly on membrane tension within cells, enabling an easy quantification of membrane tension by fluorescence lifetime imaging microscopy. We further show, using model membranes, that this linear dependency between lifetime of the probe and membrane tension relies on a membrane-tension-dependent lipid phase separation. We also provide calibration curves that enable accurate measurement of membrane tension using fluorescence lifetime imaging microscopy.


Assuntos
Corantes Fluorescentes/química , Animais , Membrana Celular/metabolismo , Cães , Células HeLa , Humanos , Lipídeos/química , Células Madin Darby de Rim Canino , Microscopia de Fluorescência , Pressão Osmótica
12.
Front Cell Neurosci ; 11: 86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424590

RESUMO

Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA