Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Cell Biochem ; 125(4): e30542, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38362828

RESUMO

Ferroptosis is a form of regulated cell death that is induced by inhibiting glutathione peroxidase 4 (GPX4), which eliminates lipid peroxidation. Ferroptosis induction is influenced by the cell environment. However, the cellular states altering ferroptosis susceptibility remain largely unknown. We found that melanoma cell lines became resistant to ferroptosis as cell density increased. Comparative transcriptome and metabolome analyses revealed that cell density-dependent ferroptosis resistance was coupled with a shift toward a lipogenic phenotype accompanied by strong induction of stearoyl-CoA desaturase (SCD). Database analysis of gene dependency across hundreds of cancer cell lines uncovered a negative correlation between GPX4 and SCD dependency. Importantly, SCD inhibition, either pharmacologically or through genetic knockout, sensitized melanoma cells to GPX4 inhibition, thereby attenuating ferroptosis resistance in cells at high density. Our findings indicate that transition to an SCD-inducing, lipogenic cell state produces density-dependent resistance to ferroptosis, which may provide a therapeutic strategy against melanoma.


Assuntos
Ferroptose , Melanoma , Estearoil-CoA Dessaturase , Humanos , Contagem de Células , Morte Celular/genética , Melanoma/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Estearoil-CoA Dessaturase/genética
2.
Cancer Sci ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009033

RESUMO

Austocystin D is a natural compound that induces cytochrome P450 (CYP) monooxygenase-dependent DNA damage and growth inhibition in certain cancer cell lines. Cancer cells exhibiting higher sensitivity to austocystin D often display elevated CYP2J2 expression. However, the essentiality and the role of CYP2J2 for the cytotoxicity of this compound remain unclear. In this study, we demonstrate that CYP2J2 depletion alleviates austocystin D sensitivity and DNA damage induction, while CYP2J2 overexpression enhances them. Moreover, the investigation into genes involved in austocystin D cytotoxicity identified POR and PGRMC1, positive regulators for CYP activity, and KAT7, a histone acetyltransferase. Through genetic manipulation and analysis of multiomics data, we elucidated a role for KAT7 in CYP2J2 transcriptional regulation. These findings strongly suggest that CYP2J2 is crucial for austocystin D metabolism and its subsequent cytotoxic effects. The potential use of austocystin D as a therapeutic prodrug is underscored, particularly in cancers where elevated CYP2J2 expression serves as a biomarker.

3.
J Biol Chem ; 295(14): 4591-4603, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32107308

RESUMO

As a branch of the unfolded protein response, protein kinase R-like endoplasmic reticulum kinase (PERK) represses global translation in response to endoplasmic reticulum (ER) stress. This pathophysiological condition is associated with the tumor microenvironment in cancer. Previous findings in our lab have suggested that PERK selectively represses translation of some mRNAs, but this possibility awaits additional investigation. In this study, we show that a stem-cell marker protein, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), is rapidly depleted in colon cancer cells during ER stress, an effect that depended on the PERK-mediated translational repression. Indeed, the PERK inhibition led to the accumulation of premature, underglycosylated forms of LGR5, which were produced only at low levels during proper PERK activation. Unlike the mature LGR5 form, which is constitutively degraded regardless of PERK activation, the underglycosylated LGR5 exhibited a prolonged half-life and accumulated inside the cells without being expressed on the cell surface. We also found that Erb-B2 receptor tyrosine kinase 3 (ERBB3) is subjected to a similarly-regulated depletion by PERK, whereas the epidermal growth factor receptor (EGFR), stress-inducible heat-shock protein family A (Hsp70) member 5 (HSPA5), and anterior gradient 2 protein-disulfide isomerase family member (AGR2) were relatively. insensitive to the PERK-mediated repression of translation. These results indicate that LGR5 and ERBB3 are targets for PERK-mediated translational repression during ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Receptor ErbB-3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , eIF-2 Quinase/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Desoxiglucose/farmacologia , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação , Meia-Vida , Proteínas de Choque Térmico/metabolismo , Humanos , Indóis/farmacologia , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Resposta a Proteínas não Dobradas , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
4.
Cancer Sci ; 112(5): 1963-1974, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33544933

RESUMO

The emergence of acquired resistance is a major concern associated with molecularly targeted kinase inhibitors. The C797S mutation in the epidermal growth factor receptor (EGFR) confers resistance to osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (EGFR-TKI). We report that the derivatization of the marine alkaloid topoisomerase inhibitor lamellarin N provides a structurally new class of EGFR-TKIs. One of these, lamellarin 14, is effective against the C797S mutant EGFR. Bioinformatic analyses revealed that the derivatization transformed the topoisomerase inhibitor-like biological activity of lamellarin N into kinase inhibitor-like activity. Ba/F3 and PC-9 cells expressing the EGFR in-frame deletion within exon 19 (del ex19)/T790M/C797S triple-mutant were sensitive to lamellarin 14 in a dose range similar to the effective dose for cells expressing EGFR del ex19 or del ex19/T790M. Lamellarin 14 decreased the autophosphorylation of EGFR and the downstream signaling in the triple-mutant EGFR PC-9 cells. Furthermore, intraperitoneal administration of 10 mg/kg lamellarin 14 for 17 days suppressed tumor growth of the triple-mutant EGFR PC-9 cells in a mouse xenograft model using BALB/c nu/nu mice. Thus, lamellarin 14 serves as a novel structural backbone for an EGFR-TKI that prevents the development of cross-resistance against known drugs in this class.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fluoracetatos , Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/química , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Moluscos/química , Mutagênese Sítio-Dirigida , Mutação , Inibidores de Proteínas Quinases/química
5.
Biochem Biophys Res Commun ; 573: 93-99, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34403810

RESUMO

ATF4 is a crucial transcription factor in the integrated stress response, a major adaptive signaling pathway activated by tumor microenvironment and therapeutic stresses. BRAF inhibitors, such as vemurafenib, induce ATF4 in BRAF-mutated melanoma cells, but the mechanisms of ATF4 induction are not fully elucidated. Here, we show that ATF4 expression can be upregulated by eukaryotic initiation factor 4B (eIF4B) in BRAF-mutated A375 cells. Indeed, eIF4B knockout (KO) prevented ATF4 induction and activation of the uORF-mediated ATF4 translation mechanism during vemurafenib treatment, which were effectively recovered by the rescue of eIF4B. Transcriptome analysis revealed that eIF4B KO selectively influenced ATF4-target gene expression among the overall gene expression changed by vemurafenib. Interestingly, eIF4B supported cellular proliferation under asparagine-limited conditions, possibly through the eIF4B-ATF4 pathway. Our findings indicate that eIF4B can regulate ATF4 expression, thereby contributing to cellular stress adaptation, which could be targeted as a therapeutic approach against malignancies, including melanoma.


Assuntos
Fator 4 Ativador da Transcrição/genética , Asparagina/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Fator 4 Ativador da Transcrição/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fatores de Iniciação em Eucariotos/deficiência , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Células Tumorais Cultivadas , Vemurafenib/farmacologia
6.
Mol Pharmacol ; 98(6): 669-676, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33033108

RESUMO

Eukaryotic initiation factor 2α (eIF2α) kinase general control nonderepressible 2 (GCN2) drives cellular adaptation to amino acid limitation by activating the integrated stress response that induces activating transcription factor 4 (ATF4). Here, we found that a multikinase inhibitor, GZD824, which we identified using a cell-based assay with ATF4 immunostaining, inhibited the GCN2 pathway in cancer cells. Indeed, GZD824 suppressed GCN2 activation, eIF2α phosphorylation, and ATF4 induction during amino acid starvation stress. However, at lower nonsuppressive concentrations, GZD824 paradoxically stimulated eIF2α phosphorylation and ATF4 expression in a GCN2-dependent manner under unstressed conditions. Such dual properties conceivably arose from a direct effect on GCN2, as also observed in a cell-free GCN2 kinase assay and shared by a selective GCN2 inhibitor. Consistent with the GCN2 pathway inhibition, GZD824 sensitized certain cancer cells to amino acid starvation stress similarly to ATF4 knockdown. These results establish GZD824 as a multikinase GCN2 inhibitor and may enhance its utility as a drug under development. SIGNIFICANCE STATEMENT: GZD824, as a direct general control nonderepressible 2 (GCN2) inhibitor, suppresses activation of the integrated stress response during amino acid limitation, whereas it paradoxically stimulates this stress-signaling pathway at lower nonsuppressive concentrations. The pharmacological activity we identify herein will provide the basis for the use of GZD824 to elucidate the regulatory mechanisms of GCN2 and to evaluate the potential of the GCN2-activating transcription factor 4 pathway as a target for cancer therapy.


Assuntos
Benzamidas/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Fator de Iniciação 2 em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico
7.
Int J Clin Oncol ; 24(4): 403-410, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30471067

RESUMO

BACKGROUND: Neoadjuvant chemotherapy (NAC) alone for locally advanced rectal cancer (LARC) remains an experimental treatment, and the efficacy in terms of long-term outcome has not been fully elucidated. The N-SOG 03 trial examined the safety and efficacy of neoadjuvant CAPOX and bevacizumab (Bev) without radiotherapy in patients with poor-risk LARC. METHODS: Thirty-two patients with MRI-defined LARC received neoadjuvant CAPOX and Bev followed by curative resection between 2010 and 2011. The overall survival (OS), progression-free survival (PFS), and local-relapse rate (LRR) were calculated using the Kaplan-Meier method, and the risk factors were evaluated by multivariate analysis using the Cox proportional hazard models. This trial is registered with UMIN, number 000003507. RESULTS: In the entire cohort, the 5-year OS was 81.3%. Because of disease progression during chemotherapy, 3 patients ultimately did not undergo curative surgery. As a result, 29 patients underwent R0/1 resection. Among these 29 patients, the 5-year OS, PFS, and LRR were 89.7%, 72.4% and 13.9%, respectively. In multivariate analysis, cT4b tumor was an independent poor prognostic factor for OS and LRR, and ypT4b tumor and absence of N down-staging were independent poor prognostic factors for PFS. CONCLUSIONS: Patients with cT4b tumor were not suitable for NAC alone. However, the long-term outcomes of the other patients were satisfactory, and NAC alone might be an option for treatment of LARC. N down-staging was likely to bring favorable PFS, even in patients with cStage III.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/mortalidade , Idoso , Bevacizumab/administração & dosagem , Capecitabina/administração & dosagem , Feminino , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Recidiva Local de Neoplasia , Oxaliplatina/administração & dosagem , Modelos de Riscos Proporcionais , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Fatores de Risco , Resultado do Tratamento
8.
Biochem Biophys Res Commun ; 504(4): 721-726, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217442

RESUMO

The integrated stress response (ISR) is a cellular process that is characterized by activation of eukaryotic initiation factor (eIF)2α kinases and subsequent induction of activating transcription factor (ATF)4. The ISR plays an important role in protecting cells from tumor-related metabolic stresses, such as nutrient deprivation and perturbed proteostasis. Here, we showed that disruption of the ISR, together with increased cellular stress vulnerability, was produced by pharmacological inhibition of BCR-ABL, the oncogenic driver in chronic myeloid leukemia (CML). Treatment of CML-derived K562 cells with BCR-ABL tyrosine kinase inhibitors, including imatinib, dasatinib, nilotinib and ponatinib, prevented activation of eIF2α kinases, protein kinase-like endoplasmic reticulum kinase (PERK) and general control nonderepressible 2, and downstream ATF4 induction during metabolic stress. Prevention of ATF4 induction likely occurred as a result of the combinatorial suppression of the eIF2α kinase and phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathways. In addition, we found that pharmacological inhibition of PERK mimicked BCR-ABL inhibition to enhance apoptosis induction under stress conditions. These findings indicate that the ISR is under the control of BCR-ABL and may foster adaptation to tumorigenic stresses in CML cells.


Assuntos
Proteínas de Fusão bcr-abl/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fator 4 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Dasatinibe/farmacologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Imidazóis/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , eIF-2 Quinase/metabolismo
9.
Biochem Biophys Res Commun ; 482(4): 1491-1497, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27965097

RESUMO

In BRAF-mutated melanoma cells, the BRAF inhibitor, vemurafenib, induces phosphorylation of eukaryotic initiation factor 2α (eIF2α) and subsequent induction of activating transcription factor 4 (ATF4), the central regulation node of the integrated stress response (ISR). While the ISR supports cellular adaptation to various stresses, the role of vemurafenib-triggered ISR has not been fully characterized. Here, we showed that in response to vemurafenib, BRAF-mutated melanoma and colorectal cancer cells rapidly induced the ISR as a cytoprotective mechanism through activation of general control nonderepressible 2 (GCN2), an eIF2α kinase sensing amino acid levels. The vemurafenib-triggered ISR, an event independent of downstream MEK inhibition, was specifically prevented by silencing GCN2, but not other eIF2α kinases, including protein kinase-like endoplasmic reticulum kinase, which transmits endoplasmic reticulum (ER) stress. Consistently, the ER stress gatekeeper, GRP78, was not induced by vemurafenib. Interestingly, ATF4 silencing by siRNA rendered BRAF-mutated melanoma cells sensitive to vemurafenib. Thus, the GCN2-mediated ISR can promote cellular adaptation to vemurafenib-induced stress, providing an insight into the development of drug resistance.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Indóis/química , Proteínas Serina-Treonina Quinases/metabolismo , Sulfonamidas/química , eIF-2 Quinase/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Colorretais/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Proteínas de Choque Térmico/metabolismo , Humanos , Melanoma/metabolismo , Mutação , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Neoplasias Cutâneas/metabolismo , Vemurafenib
10.
J Cell Biochem ; 117(2): 500-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26239904

RESUMO

PKR-like ER-resident kinase (PERK) phosphorylates eukaryotic translation initiation factor 2 α (eIF2α) under endoplasmic reticulum (ER) stress; this results in repression of general translation and induction of specific gene expression, such as activating transcription factor 4 (ATF4). We previously showed that, upon ER stress, transducin (ß)-like 2 (TBL2) was an ER-localized transmembrane protein and interacted with PERK and that TBL2 was involved in ATF4 expression and cell survival. Here, we show that TBL2 is able to associate with ATF4 mRNA and regulate its translation. The RNA-immunoprecipitation analysis using several TBL2 deletion mutants revealed that the WD40 domain was essential for association with ATF4 mRNA. Importantly, suppression of TBL2 by knockdown or overexpression of the TBL2 mutant with a defective WD40 domain diminished ATF4 induction at the translational level. Thus, our findings indicate that, under ER stress, TBL2 participates in ATF4 translation through its association with the mRNA.


Assuntos
Fator 4 Ativador da Transcrição/genética , Estresse do Retículo Endoplasmático , Proteínas de Ligação ao GTP/metabolismo , RNA Mensageiro/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Ativação Transcricional
11.
Biochem Biophys Res Commun ; 479(4): 615-621, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27697531

RESUMO

Prostate transmembrane protein, androgen induced 1 (PMEPA1) is highly expressed in various solid tumors and is known to play important roles in the transforming growth factor-ß (TGF-ß) signaling pathway. Here, we demonstrate a novel relationship between PMEPA1 and hypoxia, a common microenvironmental stress condition in solid tumors. We showed that induction of PMEPA1 expression occurred during hypoxia in a manner dependent on both TGF-ß signaling and hypoxia-inducible factor-1 (HIF-1) pathways. Furthermore, overexpression and knockdown experiments revealed that PMEPA1 enhanced HIF-1 transcription activity. Bioinformatics analyses of PMEPA1-correlated genes using a gene expression database in clinical settings showed significant enrichment of gene sets defined by TGF-ß and hypoxia and these two signaling pathways-related angiogenesis and epithelial-mesenchymal transition in many types of solid tumors. Collectively, our findings indicated that PMEPA1 participates in TGF-ß- and hypoxia-regulated gene expression networks in solid tumors and thereby may contribute to tumor progression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Fator de Crescimento Transformador beta/metabolismo , Hipóxia Tumoral/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas Mitocondriais , Proteínas de Neoplasias/genética , Transcrição Gênica , Fator de Crescimento Transformador beta/genética
12.
Cancer Sci ; 106(7): 909-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911996

RESUMO

Targeted therapy is a rational and promising strategy for the treatment of advanced cancer. For the development of clinical agents targeting oncogenic signaling pathways, it is important to define the specificity of compounds to the target molecular pathway. Genome-wide transcriptomic analysis is an unbiased approach to evaluate the compound mode of action, but it is still unknown whether the analysis could be widely applicable to classify molecularly targeted anticancer agents. We comprehensively obtained and analyzed 129 transcriptomic datasets of cancer cells treated with 83 anticancer drugs or related agents, covering most clinically used, molecularly targeted drugs alongside promising inhibitors of molecular cancer targets. Hierarchical clustering and principal component analysis revealed that compounds targeting similar target molecules or pathways were clustered together. These results confirmed that the gene signatures of these drugs reflected their modes of action. Of note, inhibitors of oncogenic kinase pathways formed a large unique cluster, showing that these agents affect a shared molecular pathway distinct from classical antitumor agents and other classes of agents. The gene signature analysis further classified kinome-targeting agents depending on their target signaling pathways, and we identified target pathway-selective signature gene sets. The gene expression analysis was also valuable in uncovering unexpected target pathways of some anticancer agents. These results indicate that comprehensive transcriptomic analysis with our database (http://scads.jfcr.or.jp/db/cs/) is a powerful strategy to validate and re-evaluate the target pathways of anticancer compounds.


Assuntos
Antineoplásicos/farmacologia , Transcriptoma , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
13.
Biochem Biophys Res Commun ; 462(4): 383-8, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25976671

RESUMO

Transducin (beta)-like 2 (TBL2) is a poorly characterized protein comprising the N-terminal transmembrane region and the C-terminal WD40 domain. We previously showed that TBL2 is an endoplasmic reticulum (ER)-localized protein that interacts with PKR-like ER-resident kinase (PERK), and under ER stress, it mediates protein expression of activating transcription factor 4 (ATF4). However, further molecular characterization of TBL2 is useful to better understand the function of this molecule. Here, we show that TBL2 associates with the eukaryotic 60S ribosomal subunit but not with the 40S subunit. The association of TBL2 with the 60S subunit was ER stress independent while the TBL2-PERK interaction occurred upon ER stress. Immunoprecipitation analysis using TBL2 deletion mutants revealed that the WD40 domain was essential for the 60S subunit association. These results could provide an important clue to understanding how TBL2 is involved in the expression of specific proteins under ER stress conditions.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Proteínas de Ligação ao GTP/química , Células HEK293 , Humanos
14.
Int J Cancer ; 135(1): 37-47, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24310723

RESUMO

De novo lipogenesis is activated in most cancers and several lipogenic enzymes have been implicated as therapeutic targets. Here, we demonstrate a novel function of the lipogenic enzyme, ATP citrate lyase (ACLY), in lipid metabolism in cancer cells. ACLY depletion by small interfering RNAs caused growth suppression and/or apoptosis in a subset of cancer cell lines. To investigate the effect of ACLY inhibition on lipid metabolism, metabolome and transcriptome analysis was performed. ACLY depletion blocks the fatty acid chain elongation from C16 to C18 in triglyceride (TG), but not in other lipid classes. Meanwhile, wild-type ACLY overexpression enhanced fatty acid elongation of TG, whereas an inactive mutant ACLY did not change it. ACLY depletion-mediated blockade of fatty acid elongation was coincident with downregulation of long-chain fatty acid elongase ELOVL6, which resides in endoplasmic reticulum (ER). Paradoxically, ACLY depletion-mediated growth suppression was associated with TG accumulation. ACLY depletion downregulated the expression of carnitine palmitoyltransferase 1A, which is a mitochondrial fatty acid transporter. Consistent with this finding, metabolome analysis revealed that ACLY positively regulates the carnitine system, which plays as an essential cofactor for fatty acid transport across mitochondrial membrane. AICAR, an activator of mitochondrial fatty acid oxidation (FAO), significantly reduced ACLY depletion-mediated TG accumulation. These data indicate that inhibition of ACLY might affect both fatty acid elongation in ER and FAO in mitochondria, thereby explaining the TG accumulation with altered fatty acid composition. This phenotype may be a hallmark of growth suppression mediated by ACLY inhibition.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Ácidos Graxos/metabolismo , Neoplasias/metabolismo , Triglicerídeos/metabolismo , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/genética , Acetiltransferases/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/enzimologia , Elongases de Ácidos Graxos , Humanos , Metabolismo dos Lipídeos/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/patologia
15.
Am J Pathol ; 182(5): 1800-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23506848

RESUMO

De novo lipogenesis is activated in most cancers. Inhibition of ATP citrate lyase (ACLY), the enzyme that catalyzes the first step of de novo lipogenesis, leads to growth suppression and apoptosis in a subset of human cancer cells. Herein, we found that ACLY depletion increases the level of intracellular reactive oxygen species (ROS), whereas addition of an antioxidant reduced ROS and attenuated the anticancer effect. ACLY depletion or exogenous hydrogen peroxide induces phosphorylation of AMP-activated protein kinase (p-AMPK), a crucial regulator of lipid metabolism, independently of energy status. Analysis of various cancer cell lines revealed that cancer cells with a higher susceptibility to ACLY depletion have lower levels of basal ROS and p-AMPK. Mitochondrial-deficient ρ(0) cells retained high levels of ROS and p-AMPK and were resistant to ACLY depletion, whereas the replenishment of normal mitochondrial DNA reduced the levels of ROS and p-AMPK and restored the sensitivity to ACLY depletion, indicating that low basal levels of mitochondrial ROS are critical for the anticancer effect of ACLY depletion. Finally, p-AMPK levels were significantly correlated to the levels of oxidative DNA damage in colon cancer tissues, suggesting that p-AMPK reflects cellular ROS levels in vitro and in vivo. Together, these data suggest that ACLY inhibition exerts an anticancer effect via increased ROS, and p-AMPK could be a predictive biomarker for its therapeutic outcome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Antineoplásicos/metabolismo , Biomarcadores Tumorais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
16.
Nihon Rinsho ; 72(6): 1058-62, 2014 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-25016804

RESUMO

In general, cancer cells proliferate depending on glycolysis, whereas supply of glucose and other nutrients is not always sufficient. Therefore, cancer cells can be often exposed to intracellular energy and/or nutrient imbalance and various forms of stress that is associated with energetic insufficiency. To cope with such metabolic stresses, cells have various mechanisms to sense nutrient status and to adapt stressful cell conditions. These include the nutrient-signaling pathways that are regulated by AMP-activated protein kinase (AMPK) and mechanistic/mammalian target of rapamycin (mTOR) and also the cellular stress responses, such as mitochondria and endoplasmic reticulum stress responses as well as autophagy.


Assuntos
Adaptação Fisiológica/fisiologia , Neoplasias/fisiopatologia , Estresse Fisiológico/fisiologia , Autofagia , Proliferação de Células , Retículo Endoplasmático/fisiologia , Humanos , Mitocôndrias/fisiologia
17.
Cureus ; 16(5): e61272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947618

RESUMO

This case report introduces a rare occurrence of transverse colon volvulus associated with persistent descending mesocolon (PDM), a congenital anomaly characterized by the medial positioning of the descending colon due to a failed fusion with the dorsal abdominal wall. We detail the case of an 18-year-old female, with a medical history of surgically corrected coarctation of the aorta and anal atresia, who presented with recurrent transverse colon volvulus despite having undergone a laparoscopic colopexy three years earlier. Physical examination revealed abdominal distension and metallic colic sounds while imaging studies confirmed the recurrence of the volvulus. Laparoscopic partial resection of the transverse colon was performed, which revealed a medially positioned descending colon due to PDM. Postoperative complications included anastomotic failure, necessitating a second operation. The patient was successfully discharged without further complications after seven days. This case underscores the clinical significance of recognizing PDM, highlighting its potential role in causing transverse colon volvulus and increasing the risk of anastomotic failure. It emphasizes the need for surgeons to remain vigilant regarding this congenital anomaly to mitigate unexpected outcomes such as recurrent volvulus and postoperative complications.

18.
Cancer Sci ; 104(3): 360-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23176546

RESUMO

Genome-wide transcriptional expression analysis is a powerful strategy for characterizing the biological activity of anticancer compounds. It is often instructive to identify gene sets involved in the activity of a given drug compound for comparison with different compounds. Currently, however, there is no comprehensive gene expression database and related application system that is; (i) specialized in anticancer agents; (ii) easy to use; and (iii) open to the public. To develop a public gene expression database of antitumor agents, we first examined gene expression profiles in human cancer cells after exposure to 35 compounds including 25 clinically used anticancer agents. Gene signatures were extracted that were classified as upregulated or downregulated after exposure to the drug. Hierarchical clustering showed that drugs with similar mechanisms of action, such as genotoxic drugs, were clustered. Connectivity map analysis further revealed that our gene signature data reflected modes of action of the respective agents. Together with the database, we developed analysis programs that calculate scores for ranking changes in gene expression and for searching statistically significant pathways from the Kyoto Encyclopedia of Genes and Genomes database in order to analyze the datasets more easily. Our database and the analysis programs are available online at our website (http://scads.jfcr.or.jp/db/cs/). Using these systems, we successfully showed that proteasome inhibitors are selectively classified as endoplasmic reticulum stress inducers and induce atypical endoplasmic reticulum stress. Thus, our public access database and related analysis programs constitute a set of efficient tools to evaluate the mode of action of novel compounds and identify promising anticancer lead compounds.


Assuntos
Antineoplásicos/farmacologia , Bases de Dados Genéticas , Expressão Gênica , Animais , Bases de Dados Factuais , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Humanos , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos
19.
Jpn J Clin Oncol ; 43(1): 74-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23136240

RESUMO

Carcinoid tumors located in the minor duodenal papilla are extremely rare, with only a few cases reported in the literature. Herein, we report the case of a 71-year-old man with a 12-mm carcinoid tumor at the minor duodenal papilla with lymph node metastases. Multidetector-row computed tomography with contrast enhancement revealed a 12-mm well-enhanced tumor in the duodenum. Upper gastrointestinal endoscopy showed a 12-mm submucosal tumor at the minor papilla of the duodenum. Biopsy specimens revealed a carcinoid tumor, and a subtotal stomach-preserving pancreatoduodenectomy was performed. Carcinoid tumors at the minor duodenal papilla have a high prevalence of nodal disease, even for tumors <2 cm in diameter. Therefore, we believe that radical resection with tumor-free margins (i.e. pancreatoduodenectomy) is the treatment of choice.


Assuntos
Tumor Carcinoide/patologia , Neoplasias Duodenais/patologia , Ductos Pancreáticos/patologia , Idoso , Tumor Carcinoide/cirurgia , Neoplasias Duodenais/cirurgia , Humanos , Excisão de Linfonodo , Metástase Linfática , Masculino , Tomografia Computadorizada Multidetectores , Ductos Pancreáticos/cirurgia , Pancreaticoduodenectomia , Prognóstico
20.
Heliyon ; 9(4): e14799, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025861

RESUMO

Some oncoproteins along with stress kinase general control non-derepressible 2 (GCN2) can ensure the induction of activating transcription factor 4 (ATF4) to counteract amino acid deprivation; however, little is known regarding the role of the oncogenic EGFR-PI3K pathway. In this study, we demonstrate that both mutated EGFR and PIK3CA contribute to ATF4 induction following GCN2 activation in NSCLC cells. The inhibition of EGFR or PI3K mutant proteins, pharmacologically or through genetic knockdown, inhibited ATF4 induction without affecting GCN2 activation. A downstream analysis revealed that the oncogenic EGFR-PI3K pathway may utilize mTOR-mediated translation control mechanisms for ATF4 induction. Furthermore, in NSCLC cells harboring co-mutations in EGFR and PIK3CA, the combined inhibition of these oncoproteins markedly suppressed ATF4 induction and the subsequent gene expression program as well as cell viability during amino acid deprivation. Our findings establish a role for the oncogenic EGFR-PI3K pathway in the adaptive stress response and provide a strategy to improve EGFR-targeted NSCLC therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA