Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 299(6): F1451-61, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20844021

RESUMO

The present study was designed to elucidate a possible mechanism of hyperglycemia-induced tubular injury and to examine a therapeutic potential of dietary eicosapentaenoic acid (EPA) for the prevention of diabetic kidney disease. Utilizing streptozotocin-induced diabetic mice, the extents of albuminuria and histological injuries were monitored at 2 wk after diabetic induction. Reactive oxygen species (ROS) production, apoptosis, and hypoxia in the kidney were evaluated by immunohistochemistry and Western blotting. An in vitro study was performed using rat proximal tubular cells (NRK-52E) to confirm the protective effect of EPA for methylglyoxal (MG)-induced ROS generation and staurosporine (STS)-induced mitochondrial apoptosis. The extents of albuminuria and histological tubular injuries were significantly lower in EPA-treated diabetic mice compared with untreated diabetic mice. The levels of lipid peroxidation product (4-hydroxy-2-nonenal), oxidative DNA damage (8-hydoxy-deoxyguanosine), and mitochondrial apoptosis (TUNEL, caspase-9, cleaved caspase-3, and cytochrome c release) in the tubular cells were also significantly lower in EPA-treated diabetic mice. Furthermore, hypoxia-inducible factor (HIF)-1α expression was significantly upregulated in the kidney tissues from EPA-treated mice compared with untreated diabetic mice. MG-induced ROS overproduction and STS-induced mitochondrial apoptosis in NRK-52E cells were significantly reduced by EPA treatment in vitro. These results indicated that the ROS generation and mitochondrial apoptosis were involved in hyperglycemia-induced tubular injury and EPA had a beneficial effect by suppressing ROS generation and mitochondrial apoptosis partly through augmentation of an HIF-1α response in diabetic kidney disease.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Ácido Eicosapentaenoico/uso terapêutico , Túbulos Renais/efeitos dos fármacos , Animais , Células Cultivadas , Citocromos c/metabolismo , Dano ao DNA , Ácido Eicosapentaenoico/sangue , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Peroxidação de Lipídeos , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA